
通俗范畴论
文章平均质量分 92
如果把范畴论看作一个多面体,它有很多个侧面,你要看清它,需要从各个角度,像水一样淹没它,从而才能把握它。
优惠券已抵扣
余额抵扣
还需支付
¥39.90
¥99.00
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
RockTec
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
通俗范畴论16 范畴化身幺半群
摘要 本文从范畴论角度探讨了幺半群的结构本质。单对象范畴(仅含一个对象和若干自态射)自然地体现了幺半群的三个核心特征:封闭性、结合律和单位元存在性。通过函子构造,作者展示了如何将抽象的单对象范畴"具体化"为各种幺半群实例,如自然数加法、矩阵乘法等。这些具体实例都是单对象范畴在不同数学领域的不同"化身",体现了范畴论的高度抽象能力。文章还正式给出了幺半群的定义,并列举了多个来自不同数学分支的幺半群例子,包括自由幺半群、矩阵运算等。原创 2025-08-25 02:10:42 · 6 阅读 · 0 评论 -
通俗范畴论15 函子的构建
本文通过构建"乘法变加法"函子LOG及其逆函子EXP,展示了范畴论中函子的实际应用方法。以正实数乘法范畴和实数加法范畴为例,详细说明了如何构造保持范畴结构的函子:LOG将乘法映射为加法(log(a×b)=log(a)+log(b)),EXP则反向映射。特别强调了函子只作用于对象和态射,不直接处理元素,需通过伴随映射(log和exp函数)完成具体计算。这种函子构建方法不仅清晰呈现了数学结构间的对应关系,还解释了计算尺等传统计算工具的工作原理。原创 2025-08-22 00:38:42 · 15 阅读 · 0 评论 -
通俗范畴论14 函子的定义
本文介绍了范畴论中函子的概念及其重要性。函子是连接不同数学结构的桥梁,能够保持范畴间的结构关系。文章首先通过家庭关系类比解释函子的直观含义,展示如何将一个范畴的对象和态射映射到另一个范畴,同时保持其结构不变。随后通过数学示例,详细阐述了函子需要满足的条件:必须保持恒等态射和态射的组合关系。最后给出了函子的严格数学定义,指出函子是将一个范畴的对象和态射映射到另一个范畴的映射,且必须满足两个关键条件:1)保持恒等态射;2)保持态射组合。函子作为范畴论的第二大支柱,为统一不同数学分支提供了有力的工具。原创 2025-08-10 11:52:57 · 46 阅读 · 0 评论 -
通俗范畴论13 鸡与蛋的故事番外篇
摘要:本文探讨了鸡与蛋范畴论模型在实作系统中的可行性。通过构建Set局部小范畴,分析在有限资源下信息不全导致的null元素扩散问题。研究表明,态射(函数)作为信息载体比对象本身更重要,体现了范畴论"从外部考察对象"的思维方式。文章还展示了如何随时间推移动态更新系统信息,并提出了将更复杂关系(如夫妻关系)编码到范畴中的思考题。该模型揭示了有限实作系统中信息处理的本质特征。原创 2025-07-12 22:26:27 · 72 阅读 · 0 评论 -
通俗范畴论12 鸡与蛋的故事
本文通过"鸡与蛋"的循环相生问题,展示了如何用范畴论方法分析和建模现实世界的复杂关系。作者首先尝试用简单的范畴结构(鸡与蛋作为对象,下蛋和孵化作为态射),发现存在边界问题(如公鸡不下蛋)。为处理异常,引入空元素概念。随后采用逆向思维,从"来源"而非"产生"的角度重构范畴,获得更简洁的表达。进一步丰富模型时,运用直和(区分公鸡/母鸡、受精卵/非受精卵)和直积(蛋父母)结构,展示了范畴论如何精确捕捉复杂系统中的各种关系。文章强调,范畴论不仅是一种数学工原创 2025-07-12 13:30:29 · 48 阅读 · 0 评论 -
为什么要爱数学(写给小朋友)
我们的起步很简单,只需要连起来就行,你可以随便画,比如,你可以用笔,往前移动一段距离,然后画个圈,继续画,连到另一个点,等等。印度的释迦摩尼,在菩提树下打坐,他要参透人生,寻找世界的真理,孔子说,朝闻道,夕死可矣,还有很多我们知道,或者不知道的人,都在寻找真理。鸟能比人飞得高,牛比人有力气,猎豹的速度人望尘莫及,在物质的世界,有很多动物,在单项上,都比人类优雅。所以,如果你是一个追求智慧、追求完美、追求自由的人,那么,你应该爱数学,它能让你的头脑更加睿智,让你思维更懂得美,让你的心灵更加自由。原创 2024-11-03 18:10:01 · 111 阅读 · 0 评论 -
通俗范畴论11 对偶范畴与余积
最后,我们给出对偶范畴的定义,有了前面的铺垫,这个定义将非常自然:给定一个范畴CC,其对偶范畴通常记作CopCop或CoppositeCopposite数据:obCopobCop这个聚集和CC的对象聚集一样,即obCopobCobCopobCCopCop中 从 A 到 B 的态射聚集CopABCopAB是CC中从 B 到 A 的态射聚集CBACBA。原创 2024-08-26 21:20:08 · 273 阅读 · 2 评论 -
通俗范畴论10 泛性质(MD版)
既然泛性质可以在同构意义下唯一确定一个泛构造,那么我们就可以用泛性质来定义泛构造。我们回顾一下已经掌握的泛性质和泛构造。泛性质其实我们并不陌生,始对象和终对象,就是具有泛性质的对象,一个具有“始”的泛性质,一个具有“终”的泛性质。比如始对象,如果一个范畴里面有始对象,它到所有对象都有且只有一个态射,这样的对象可能有两个么?嗯,还真可能,但是这两个始对象同构,所以在同构意义下,它们可以看成一个,因此在同构意义下,始对象是唯一的。同理,终对象也一样。同构的始对象。原创 2024-08-17 13:33:31 · 326 阅读 · 0 评论 -
通俗范畴论10 泛性质
既然泛性质可以在同构意义下唯一确定一个泛构造,那么我们就可以用泛性质来定义泛构造。我们回顾一下已经掌握的泛性质和泛构造。泛性质其实我们并不陌生,始对象和终对象,就是具有泛性质的对象,一个具有“始”的泛性质,一个具有“终”的泛性质。比如始对象,如果一个范畴里面有始对象,它到所有对象都有且只有一个态射,这样的对象可能有两个么?嗯,还真可能,但是这两个始对象同构,所以在同构意义下,它们可以看成一个,因此在同构意义下,始对象是唯一的。同理,终对象也一样。Figure 1. 同构的始对象。原创 2024-08-08 17:13:24 · 213 阅读 · 0 评论 -
通俗范畴论9 态射的类型(MD版)
那么,同构态射是一种什么样的态射,如何定义呢?同构态射在上面这个母范畴中,如果 A、B 同构,那么,站在 A 的角度,我们希望,从 A 出发,经过 f 和 g,转一圈回来,A 还是 “原来的” A,这个怎么表达呢?g∘fIdAg∘fIdA,因为 IdA是恒等态射,所以这个表达是准确的。我们从 A 出发,经过 f,到达 B,然后 g 把我们又带回了 A,而且整个复合的效果等于 IdA,g 就如同一个反操作,完全取消了 f 的效果。原创 2024-11-08 13:24:07 · 191 阅读 · 0 评论 -
通俗范畴论9 态射的类型
那么,同构态射是一种什么样的态射,如何定义呢?请看下图:在上面这个母范畴中,如果 A、B 同构,那么,站在 A 的角度,我们希望,从 A 出发,经过 f 和 g,转一圈回来,A 还是 “原来的” A,这个怎么表达呢?我们可以这样表达:g∘f=IdA𝑔∘𝑓=𝐼𝑑𝐴,因为 IdA 是恒等态射,所以这个表达是准确的。我们从 A 出发,经过 f,到达 B,然后 g 把我们又带回了 A,而且整个复合的效果等于 IdA,g 就如同一个反操作,完全取消了 f 的效果。原创 2024-07-20 00:23:33 · 341 阅读 · 0 评论 -
通俗范畴论8 始对象与终对象
范畴C中的对象I,是始对象,当且仅当:∀A∈C,∃!我们在前文范畴的定义部分,给出了范畴的定义,范畴的定义本身,不依赖于集合论,它是公理化的,可以作为逻辑的起点,对于这个范畴的定义,因为它不依赖于已有的数学概念,因此我们给它取个名字,叫做母范畴(Meta Category)。如果 A是非空集合:因为 Set𝑆𝑒𝑡 包含所有集合对象,所以,我们总可以找到一个集合 B,使得 |B|>1|𝐵|>1,因为 |A|≥1|𝐴|≥1,所以:|B||A|≥2|𝐵||𝐴|≥2,因此任何非空集合都不可能是始对象。原创 2024-07-11 08:26:09 · 195 阅读 · 0 评论 -
通俗范畴论7 Set 集合函数范畴
我们初中就学过函数的概念,这里,我们将对函数进行重新发现。函数设 A 和 B 是任何集合,一个函数 A→fB𝐴→𝑓𝐵, 将 A 中的每一个元素 a 对应到 B 中的一个元素 f(a)。其中 A 叫做定义域(Domain),B 叫做陪域(Codomain)。从上述定义,我们可以看出,在集合 A 和 B 之间所有有序对 (a,f(a)) 构成的集合,就是函数 A→fB𝐴→𝑓𝐵。对于任何元素 a 属于 集合 A,在函数 f 中,以 a 打头的有序对 (a,_) 只有一个。原创 2024-07-01 11:45:08 · 671 阅读 · 0 评论 -
通俗范畴论6 基于关系的范畴
关系范畴(Category of Relations),通常被称为 Rel𝑅𝑒𝑙:Figure 6. 关系范畴对象(Objects):对象是集合态射(Morphisms):态射是定义在两个集合之间的关系。如果 A 和 B 是两个集合,那么从 A 到 B 的态射是一个关系 R⊆A×B,其中 R 是 A 和 B 的笛卡尔积的子集。原创 2024-06-27 15:49:52 · 146 阅读 · 0 评论 -
通俗范畴论5 范畴实例
其次,这个范畴包括了所有的集合,因此ob(Set)𝑜𝑏(𝑆𝑒𝑡),即该范畴所有对象的全体,是一个聚集,不是一个集合。在前一部分,我们看到,为了让范畴的定义适应尽可能多的情况,同时在定义时外部依赖最小,对于一个范畴,其对象的全体 ob(C)𝑜𝑏(𝐶)和任意 对象A 到 对象B 态射的全体 C(A,B)𝐶(𝐴,𝐵) 都定义为了聚集(Collection)。我们把这个构造出的范畴,取个名字,叫做Cat𝐶𝑎𝑡。所有集合构成的范畴,该范畴的对象是集合,态射是集合间的函数,态射的复合是函数的复合,又名集合函数范畴。原创 2024-06-26 00:14:51 · 216 阅读 · 0 评论 -
通俗范畴论4 范畴的定义
上一节我们在没有引入范畴这个数学概念的情况下,直接体验了一个“苹果1”范畴,建立了一个对范畴的直观。本节我们正式学习范畴的定义和基本性质。一个范畴(Category) C𝐶,由以下部分组成:数据:对象(Objects):包含若干个对象(Objects),这些对象的全体构成一个聚集(Collection),这个聚集记为 ob(C)𝑜𝑏(𝐶)原创 2024-06-24 12:09:04 · 400 阅读 · 0 评论 -
通俗范畴论3 从特指对象到对象
事实上,范畴论对象可以理解为一个静态的东西,对于苹果1,只要上图不变,苹果1对象就不变。我们从Id苹果1箭头的起点,也就是苹果1(源对象)出发,箭头就是求这个起点的对应对象(目标对象),这个起点的对应对象在箭头的终点,终点对象的名字叫苹果1,所以,源对象和目标对象同一,即源对象和目标对象是同一个对象。对象,即使世界上没有符合要求的苹果存在,苹果1作为一个范畴论对象实体,仍然存在,即,苹果1是:小丽喜欢的、小明购买的,可以称出重量,能做苹果酱的、能咬一口的东西,这个结构仍然存在,即上面的图的含义仍然存在。原创 2024-06-21 10:47:13 · 152 阅读 · 0 评论 -
通俗范畴论2 有向图与准范畴
退一步海阔天空,在正式进入范畴论之前,我们可以重新审视一下我们是如何认识世界的,有了这个对人类认识世界过程的底层理解,可以帮助我们更好地理解范畴论。对于人类认识世界,最神奇的一点就是这个世界居然是可以认识的,我们可以用自然语言描述它、我们可以用数学公式表示它,当然我们也可以用二维的图画描摹它,我们也可以把它看成三维的空间加一维的时间,也可以将三维空间和时间看成一体的,从而我们的世界是四维时空。原创 2024-06-16 14:21:33 · 296 阅读 · 0 评论 -
通俗范畴论1 范畴论的由来
要简单地说明,什么是范畴论,英国数学家、教育家尤金妮娅·程,有这样一句话:范畴论是数学中的数学。为什么范畴论是数学中的数学呢?就好比世界上所有的居所,甚至包括动物的居所哦,都有一个入口一样,数学的各个分支如果互相比较,总有一些相似的地方,如果我们把数学的不同分支看作不同的结构,那么就是说数学的各个分支,都有着一些相似的结构。而范畴论可以很好地描述不同数学分支中相似的结构,因此,我们可以将范畴论看作是数学中的数学。原创 2024-06-16 14:11:23 · 363 阅读 · 1 评论