立体匹配代价与数字高程模型融合研究
在地理数据处理和分析领域,立体匹配代价评估以及数字高程模型(DEM)融合是两个重要的研究方向。下面将详细介绍不同立体匹配代价的性能研究以及基于稀疏表示的 DEM 融合方法。
不同立体匹配代价的性能研究
在立体匹配中,匹配代价的选择对最终结果的质量有着重要影响。研究人员对两种典型的匹配代价(MI 和 Census)以及一种新颖的匹配代价(MIC)进行了评估,使用半全局匹配(SGM)算法处理带有真实地面数据的航空影像序列和卫星图像。
-
不同匹配代价的性能表现
- MI(互信息) :在低辐射变化和小基线立体对的情况下,MI 的表现略优于 Census。它能够在不连续处保持清晰的边缘,生成的视差图噪声较少。然而,在存在局部辐射变化的区域,MI 的性能会下降。
- Census :对于较大基线的情况,Census 表现良好,但会导致物体边界略有模糊。在大基线卫星立体影像中,Census 的表现明显优于 MI。此外,由于 Census 将局部结构转换到代价中,它更适合处理均匀区域。
- MIC(MI 和 Census 的加权和) :MIC 综合了 MI 和 Census 的优点,在遥感数据集上的表现优于 MI 和 Census。
-
实验结果分析
-