椭圆曲线算术:点表示、运算与乘法方法解析
1. 椭圆曲线同构相关定理
在二元域 $K = F_{2^m}$ 上,有关于非超奇异椭圆曲线的重要定理。
- 同构条件 :对于非超奇异椭圆曲线 $E_1: y^2 + xy = x^3 + ax^2 + b$ 和 $E_2: y^2 + xy = x^3 + a’x^2 + b’$,它们在 $K$ 上同构的充要条件是 $b = b’$ 且 $Tr(a) = Tr(a’)$,这里的 $Tr$ 是迹函数。若满足这些条件,存在 $s \in F_{2^m}$ 使得 $a’ = s^2 + s + a$,并且变量变换 $(x, y) \to (x, y + sx)$ 可将方程 $E_1$ 转化为方程 $E_2$。
- 同构类数量与代表集 :$K$ 上非超奇异椭圆曲线的同构类数量为 $2^{m + 1} - 2$。设 $\gamma \in F_{2^m}$ 满足 $Tr(\gamma) = 1$,同构类的一组代表为 ${y^2 + xy = x^3 + ax^2 + b | a \in {0, \gamma}, b \in F_{2^m}^ }$。
- 曲线阶的性质 *:非超奇异椭圆曲线 $E: y^2 + xy = x^3 + \gamma x^2 + b$ 的阶 $#E(F_{2^m})$ 能被 2 整除。若 $Tr(\gamma) = 0$,则 $#E(F_{2^m})$ 能被 4 整除。
2. 点表示与群运算
在椭圆曲线运算中,点的加法和倍点运算公式在不同类型的椭圆曲线中有不同形式。对于