椭圆曲线点乘算法:减半法与加倍法的综合比较
在椭圆曲线算术领域,点乘运算是核心操作之一,广泛应用于椭圆曲线密码学等领域。本文将深入探讨基于减半的点乘方法,并与传统的加倍方法进行全面比较,同时分析不同曲线和场景下点乘算法的性能表现。
1. 平方根计算的优化方法
在有限域中,平方根的计算是一个重要的基础操作。传统方法可能需要较多的存储和复杂的域乘法运算,而新提出的技术通过巧妙的数学推导,减少了这些需求。
当计算 $\sqrt{z} \cdot c_{odd}$ 时,在某些情况下仅需两次左移操作和一次模约简。例如,在 NIST 推荐的有限域 $F_{2^{409}}$ 中,其约简多项式为 $f(z) = z^{409} + z^{87} + 1$,计算 $c \in F_{2^{409}}$ 的平方根的新公式为:
$\sqrt{c} = c_{even} + z^{205} \cdot c_{odd} + z^{44} \cdot c_{odd} \mod f(z)$
在 $F_{2^{233}}$ 中,约简多项式为 $f(z) = z^{233} + z^{74} + 1$,由于 $k = 74$ 为偶数,有 $\sqrt{z} = z^{-116} \cdot (z^{37} + 1) \mod f(z)$。通过推导可知 $z^{-74} \equiv 1 + z^{159} \mod f(z)$ 和 $z^{-42} \equiv z^{32} + z^{191} \mod f(z)$,进而得到 $z^{-116} \equiv z^{32} + z^{117} + z^{191} \mod f(z)$,所以计算 $c \in F_{2^{233}}