线性神经网络最典型的例子是自适应线性元件(Adaptive Linear Element, Adaline),20世纪50年代末由Widrow和Hoff提出。线性神经网络的激活函数(或者称为传输函数)是线性函数(Linear,图1)和符号函数(Sgn,图2),除了产生二值输出以外,还可以产生模拟输出(输出可以为任意值,图3)。线性神经网络采用Widrow-Hoff学习规则,即LMS(Least Mean Square)算法来调整网络的权值和偏置。LMS算法用于训练单层网络,从理论上说,对于每一个多层线性网络,都具有一个等效的单层线性网络与之对应。
图1 线性函数(Linear, y=x, x本身就是神经元输出)
图2 符号函数(Sgn, x大于等于0时,输出1,否则输出-1)