线性神经网络

线性神经网络最典型的例子是自适应线性元件(Adaptive Linear Element, Adaline),20世纪50年代末由Widrow和Hoff提出。线性神经网络的激活函数(或者称为传输函数)是线性函数(Linear,图1)和符号函数(Sgn,图2),除了产生二值输出以外,还可以产生模拟输出(输出可以为任意值,图3)。线性神经网络采用Widrow-Hoff学习规则,即LMS(Least Mean Square)算法来调整网络的权值和偏置。LMS算法用于训练单层网络,从理论上说,对于每一个多层线性网络,都具有一个等效的单层线性网络与之对应。

 

 图1  线性函数(Linear, y=x, x本身就是神经元输出)

图2  符号函数(Sgn, x大于等于0时,输出1,否则输出-1) 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

109702008

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值