单目视觉目标位置估计与自适应团队行为规划
单目视觉目标位置估计
在机器人足球比赛中,准确检测和定位目标是至关重要的。单目视觉目标位置估计方法采用了SSD MobileNet v2卷积神经网络(CNN)架构进行目标检测,并通过估计地面点来计算相对位置。
评估过程
- 实验设置 :使用标准高尔夫橙色球(平均直径42.7毫米)进行实验,在SSL足球场上以250毫米的网格放置地标。将机器人固定在一个位置,设置相机的XY坐标为0和 -500。
- 数据采集 :在30个标记坐标处放置球,采集图像。对球的边界框进行回归,并标注屏幕上每个地标中心对应的像素。
- 评估指标 :使用均方根误差(RMSE)来衡量位置估计的准确性,并计算物体与机器人之间的角度。
相机校准结果
- 内参估计 :使用Logitech C922相机拍摄20张640×480分辨率的棋盘格图片,估计相机的内参。
- 外参校准 :在屏幕上手动标记5个点(左右球门下角、左右罚球区下角和球门底部中心),通过PnP问题求解旋转和平移向量,计算相机与场地轴的相对姿态。校准结果如下:
[
K =
\begin{bmatrix}
642.41 & 0 & 322.80 \
0 & 642.54 & 239.76 \
0 &am