Conditional probability based multi-objective cooperative task assignment for heterogeneous UAVs
2023.08发表于Engineering Applications of Artificial Intelligence
sci二区
文献地址: https://doi.org/10.1016/j.engappai.2023.106404
Conditional probability based multi-objective cooperative task assignment for heterogeneous UAVs
摘要:
在实际空战中,无人机不可避免地存在被毁的风险。然而,在任务规划阶段很少考虑这种风险。在本文中,我们重点关注异构无人机的协作任务分配。我们开发了一个多目标优化模型,以找到任务增益和无人机损失之间的平衡。通过引入任务成功和无人机损失的概率,利用条件概率论表达目标函数。弹药装载能力、时间约束和优先级约束被建模为约束。为了解决这个组合问题开发了一种改进的多目标遗传算法,该算法结合了自然染色体编码格式和专门设计的遗传算子。构建了一种有效的解锁方法来解决不可避免的死锁现象,同时保持群体随机性。对不同问题规模和弹药库存进行数值模拟,并将所提出的算法分别与使用不同解锁方法的多目标粒子群优化和多目标灰狼优化进行比较。仿真和比较结果证明了所开发模型和所提出算法的实用价值和有效性。
目录
一、介绍
1.1、背景动机
本文的动机包括两个主要方面:
(i)构建一个能够衡量无人机破坏风险和协作多任务分配问题(MOCTAP)的各种资源约束的多目标优化模型;
(ii) 提出一种具有高效解锁能力的进化算法,以避免死锁情况。尽管目前已经开发出许多针对协同任务分配问题(CTAP)的模型和算法,但仍需要进一步提高建模的准确性和多无人机MOCTAP的适用性,以适应日益复杂的战场环境。
一方面,为了降低模型的复杂度和算法的计算难度,现有研究通过任务假设、无人机、还有弹药水平,比如无人机必须能够完成任务并生存,弹药必须充足等等。然而,这些假设导致了一个理想化模型,很难代表真实战场环境中的 CTAP。另一方面,对于违反优先级约束的不可行个体(即死锁现象),目前的研究通常采用基于随机的解锁方法,其缺点是消耗大量运行时间且计算效率低,特别是在处理大规模时问题。提高MOCTAP模型的实用性以及算法对多种无人机系统的效率和适用性是本文的主要工作。等等。然而,这些假设导致了一个理想化模型,很难代表真实战场环境中的 CTAP。另一方面,对于违反优先级约束的不可行个体(即死锁现象),目前的研究通常采用基于随机的解锁方法,其缺点是消耗大量运行时间且计算效率低,特别是在处理大规模时问题。提高MOCTAP模型的实用性以及算法对多种无人机系统的效率和适用性是本文的主要工作。等等。然而,这些假设导致了一个理想化模型,很难代表真实战场环境中的 CTAP。另一方面,对于违反优先级约束的不可行个体(即死锁现象),目前的研究通常采用基于随机的解锁方法,其缺点是消耗大量运行时间且计算效率低,特别是在处理大规模时问题。提高MOCTAP模型的实用性以及算法对多种无人机系统的效率和适用性是本文的主要工作。目前的研究通常采用基于随机的解锁方法,其缺点是消耗大量运行时间且计算效率低,特别是在处理大规模问题时。提高MOCTAP模型的实用性以及算法对多种无人机系统的效率和适用性是本文的主要工作。目前的研究通常采用基于随机的解锁方法,其缺点是消耗大量运行时间且计算效率低,特别是在处理大规模问题时。提高MOCTAP模型的实用性以及算法对多种无人机系统的效率和适用性是本文的主要工作。
1.2 贡献
本文研究了异构无人机(即监视无人机、战斗无人机和弹药无人机)和多种任务类型(即分类任务、攻击任务和验证任务)的MOCTAP。如果任务分配忽略了实际风险,即无人机被摧毁的风险、任务未完成的风险,则任务分配模型可能会变得理想化。在建模中考虑风险将获得比忽略风险更实用的任务分配策略。本文最重要的创新点是构建了基于各种风险的多无人机协同任务分配的多目标优化模型,并设计了包含快速解锁方法的多目标优化算法。详情如下。
首先,针对无人机毁坏和任务无法完成的风险,综合考虑各种风险,开发了基于条件概率论的MOCTAP风险优化模型框架。以攻击目标价值最大化和被摧毁无人机价值最小化为目标。弹药、时间和协调约束都被视为优化问题中的约束。
其次,为了解决这个问题,我们提出了一种基于快速非支配排序方法和精英保留策略的改进遗传算法(MOCTAP-GA)。采用只考虑分配任务的染色体编码格式,减少了每条染色体的大小。与包含所有任务的编码方法相比,该编码方法可以提高算法的计算效率。专门设计的基因算子可以处理弹药充足和弹药不足的情况。这解决了单个交叉算子和单个变异算子的缺点。
最后,提出了一种快速定位解锁方法(FPUM)来处理死锁染色体。该方法结合了判断和解锁染色体两个阶段,能够准确地在锁定点解锁染色体。可以实现高效的解锁过程并保持种群的随机性。FPUM的高解锁效率提高了构建的优化算法的效率。
二、无人机协同任务分配问题描述
2.1 敌方目标
- 目标集:𝑇 = {𝑇1, 𝑇2,…, 𝑇𝑁𝑇 }
NT个目标
– 每个目标包括三类不可或缺的任务:分类任务、攻击任务和验证任务,分别缩写为𝐶、𝐴和𝑉。任务类型集合表示为𝑆𝑡𝑦𝑝𝑒𝑠 = {𝐶,𝐴,𝑉}。\
高价值目标通常会导致重大风险,而低价值目标通常会导致低风险。在本文中,我们假设对低价值目标和高价值目标的攻击任务数量分别为1和2,以提高攻击成功率。
其中𝐴1和𝐴2代表对𝑇𝑗的第一次和第二次(如果需要)攻击。仅当目标的所有任务都已完成时,该目标才能成功执行。假设𝑇中有𝐿 (𝐿 ≤ 𝑁𝑇 ) 个高价值目标,则任务总数𝑁𝑎𝑙𝑙为 3𝑁𝑇 + 𝐿。
每个目标的分类任务、攻击任务和验证任务依次执行。让 𝑡𝑖𝑚𝑒𝐶 𝑇𝑗 、 𝑡𝑖𝑚𝑒𝐴1 𝑇𝑗 、 𝑡𝑖𝑚𝑒𝐴2 𝑇𝑗 和 𝑡𝑖𝑚𝑒𝑉 𝑇𝑗 分别表示𝑇𝑗 的𝐶、𝐴1、𝐴2 和𝑉 的执行时刻;令 △𝑡𝐶 𝑇𝑗 、 △𝑡𝐴1 𝑇𝑗 、 △𝑡𝐴2 𝑇𝑗 和 △𝑡𝑉 𝑇𝑗 代表执行 𝑇𝑗 的𝐶、𝐴1、𝐴2 和 𝑉 所需的时间。
2.2 异构无人机
-
无人机机队中包括监视、战斗和弹药无人机。
监视无人机 𝑠 战斗无人机 𝑐 弹药无人机 𝑚 -
任务集:
其中 𝑁𝑈𝑖 是分配给 𝑈𝑖 的任务数量,𝑡𝑎𝑠𝑘 𝑈𝑖 𝑙 (𝑙 ∈ 𝐼𝑁𝑈𝑖 ) 表示 𝑈𝑖 执行的第 𝑙 任务。 -
𝑈 𝑖 (𝑖 ∈ 𝐼 𝑁𝑇 ) 的值表示为 𝑉𝑎𝑙𝑢𝑒𝑈𝑖 。不同的无人机在执行不同目标的任务时,成功和生存的概率不同。
– 𝑆𝑉𝑘 𝑖𝑗 (𝑖 ∈ 𝐼𝑁𝑈 , 𝑗 ∈𝐼𝑁𝑇 , 𝑘 ∈ 𝐼3) 表示 𝑇𝑗 被任务类型为 𝑘 的𝑈𝑖 破坏的概率,并且 𝑘 = 1、2、3分别代表𝐶、𝐴、𝑉的任务类型。成功概率
– 令 𝐾𝐼𝑘 𝑖𝑗 表示当 𝑈𝑖 为 𝑇𝑗 执行任务类型 𝑘 时,𝑈𝑖 被销毁的概率。如果𝑈𝑖是𝑠类型,则无法完成攻击任务;如果𝑈𝑖是𝑚类型,那么它只能完成攻击任务。生存概率
– 因此,我们可以做出以下自然假设。如果𝑈𝑖的类型是𝑠,那么𝑆𝑉2 𝑖𝑗 = 𝐾𝐼2 𝑖𝑗 = 0,而𝑈𝑖的类型是𝑚,那么𝑆𝑉1 𝑖𝑗 = 𝑆𝑉3 𝑖𝑗 = 𝐾𝐼1 𝑖𝑗 = 𝐾𝐼3 𝑖𝑗 = 0 (𝑗 ∈ 𝐼𝑁𝑇 )。
三、多目标优化模型的建立
3.1连通有向图
为了表示无人机执行任务的顺序,引入了连通图(Jia et al., 2018)来反映无人机从当前任务到下一个任务的执行情况。令顶点集定义为 𝑉 = {𝑇1, 𝑇2,…, 𝑇𝑁𝑇 }。边集定义为 𝐸 = {(𝑉𝑚 , 𝑉𝑛) ∣ 𝑉𝑚 ∈ 𝑉, 𝑉𝑛 ∈ 𝑉, 𝑚 ≠ 𝑛}。那么连通有向图可以表示为 𝐺 = (𝑉, 𝐸)。
3.2 目标函数
预期有小损失、大收益的任务分配方案。因此,以利润期望最大化和成本期望最小化作为衡量任务分配计划的指标。由于无人机只有在不被破坏的情况下才能继续执行下一个任务,因此在建模中使用了条件概率。只有满足以下两个条件, 𝑡𝑎𝑠𝑘 𝑈𝑖 𝑗 (𝑖 ∈ 𝐼𝑁𝑈 , 𝑗 ∈ 𝐼𝑁𝑈𝑖 ) 才能被执行:
(1) 𝑡𝑎𝑠𝑘 𝑈𝑖 𝑗对应的目标集中𝑡𝑎𝑠𝑘𝑈𝑖 𝑗之前的任务已完成;
(2) 任务集中𝑀𝑈𝑖中的𝑡𝑎𝑠𝑘 𝑈𝑖 1 , 𝑡𝑎𝑠𝑘 𝑈𝑖 2 , ⋯, 𝑡𝑎𝑠𝑘 𝑈𝑖 𝑗−1 已被执行并且𝑈𝑖 幸存下来。
- 在构建目标函数时考虑了两个期望,即完成目标价值的期望和被击毁无人机价值的期望。
– 最大化被摧毁目标价值的期望:
– 最小化被摧毁无人机价值的期望:
– 最小化未毁坏目标的价值期望:
令 𝑓 = (𝑓1, 𝑓2)⊤,其中 𝑓1 = 𝐽3 且 𝑓2 = 𝐽2。那么目标函数就是最小化向量函数𝑓。
其中:
3.3 约束
-
弹药限制:
分配给无人机的任务类型𝐴数量不能超过无人机的载弹量。并且无人机执行的𝐶和𝑉类型数量不受无人机本身的限制。其中𝐴𝑀𝑖代表𝑈𝑖的弹药容量。若无人机型号为𝑠,则其载弹量记录为0。
-
协调约束: 为了缩短同一架无人机在某一地点的停留时间,降低无人机被发现并被摧毁的风险,我们假设一架无人机最多攻击同一目标一次,因此,针对高价值目标的攻击任务将被分配给不同的无人机。
-
任务时间限制:
每个目标的任务需要按顺序执行。对于同一目标的任务,𝐴类型的任务只有在𝐶类型的任务完成后才能执行,V类型的任务只有在𝐴类型的任务完成后才能执行。 -
无人机执行时序限制:
对于某个无人机来说,它需要遵循其任务集中的任务顺序。例如,𝑡𝑎𝑠𝑘 𝑈𝑖 𝑗 ∈ 𝑀𝑈𝑖 (𝑗 属于 𝐼𝑁𝑈𝑖 , 𝑖∈ 𝐼𝑁𝑈 ) 只能在上一个任务 𝑡𝑎𝑠𝑘 𝑈𝑖 𝑗−1 ∈ 𝑀𝑈𝑖 已被执行之后执行。因此,需要考虑以下约束:
3.4 多目标优化模型
min 𝑓 = (𝑓1, 𝑓2) ⊤
四、MOCTAP多目标优化算法
4.1 编码方式
染色体的编码是通过构建基因并组合所有基因来实现的。每个基因由三部分组成:目标编号、任务类型、无人机编号。所有生成的基因被合成为一条完整的染色体,如图2所示。每条染色体的基因是顺序生成的,无人机根据基因生成的顺序执行相应的任务。染色体的维度不是固定的,它取决于分配的任务数量。尺寸用 DIM 表示,计算如下:
其中 ℎ (0 < ℎ ≤ 𝐿 ≤ [𝑏∕2]) 表示分配的高价值目标数量,𝑏 表示弹药总数。 AM
i`
eg:4架无人机和4个目标
生成算法
4.2 交叉操作
交叉时的问题:
(1)如果交叉亲本的染色体尺寸不同,交叉点的选择就会出现问题;
(2)染色体中同一目标的同一任务多次执行等。
染色体维数与弹药数量和攻击任务数量有关,因此根据这两个因素之间的关系构造交叉算子。交叉概率用 𝑃𝑐 表示。令𝐹1和𝐹2分别表示交叉操作的父代,𝑅𝑀𝑖表示与𝐹𝑖对应的具有剩余攻击能力的无人机集合。 𝑅𝑇𝑖表示𝐹𝑖中未被攻击的目标集合,(𝑖 ∈ 𝐼2)。下面分别讨论弹药充足和不足的情况。
4.2.1 提供充足的弹药
- Σ𝑁𝑈 𝑖=1 𝐴𝑀𝑖 ≥ 𝑁𝑇 + 𝐿 :说明携带弹药充足,任意选择两个交点𝑝1,𝑝2 ,对𝐹1和𝐹2两个交点之间的基因进行交叉操作。
- 若 Σ𝑁𝑈 𝑖=1 𝐴𝑀𝑖 ≥ 𝑁𝑇 + 𝐿 ,且𝑅𝑀𝑖 ≠ ∅,𝑅𝑇𝑖 = ∅ (𝑖 ∈ 𝐼2)。对于𝐹1和𝐹2中𝑝1和𝑝2之间的基因,𝑆𝑠𝑐 1和𝑆𝑠𝑐 2表示执行𝐶或𝑉类型任务的无人机集合,𝑆𝑐𝑚 1和𝑆𝑐𝑚 2是分别表示执行攻击任务的无人机集合。 𝐹1 上的交叉操作如算法2所示。类似地,可以得到𝐹2 染色体上的交叉操作。
没看完存档