预测解释
说明哪些特征对单个实例的预测贡献最大,并解释它们如何影响预测结果。
输入
- 模型:需要解释其预测的模型
- 背景数据:用于计算解释所需的数据
- 数据:需要解释预测结果的单个数据实例
输出
- 分数:每个特征值的SHAP值。对预测贡献较大的特征,其分数与0的偏差更大。
预测解释小部件用于解释分类或回归模型对提供的数据实例的预测结果。该小部件显示哪些特征对所选类别的预测影响最大,以及它们如何影响预测(支持或反对预测)。解释的计算方式是通过移除特征、用背景数据中的不同选项替换它们,并观察预测的变化。
- 选择目标类别——图表将显示针对该类别的解释。
- 放大/缩小图表。
- 观察类别的预测概率和基准值——数据集中概率的平均值。
- 图表显示对预测影响最大的特征(条形较长的特征)及其影响方式。红色特征会增加所选类别的概率,而蓝色特征会降低概率。在条形的右侧,可以看到特征名称及其在所选实例中的值*。条形段的长度(以及条形上的数字)表示特征贡献的SHAP值——即该特征对所选类别概率的影响程度。灰色框中的数字表示所选类别的预测概率(0.6)和基准概率(0.45)(数据中的平均概率)。