不同路径 II---序列DP

题目描述

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

现在考虑网格中有障碍物。问总共有多少条不同的路径?

思路

代码

#include <iostream>
#include <vector>
#include <string>
#include <sstream>

using namespace std;

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        int n = obstacleGrid.size(), m = obstacleGrid.at(0).size();
        vector <int> f(m);

        f[0] = (obstacleGrid[0][0] == 0);
        for (int i = 0; i < n; ++i) {
            for (int j = 0; j < m; ++j) {
                if (obstacleGrid[i][j] == 1) {
                    f[j] = 0;
                    continue;
                }
                if (j - 1 >= 0 && obstacleGrid[i][j - 1] == 0) {
                    f[j] += f[j - 1];
                }
            }
        }
        return f.back();
        //return f[m-1];
    }
};

vector<int> split(string params_str) {
    vector<int> p;
    while (params_str.find(",") != string::npos) {
        int found = params_str.find(",");
        p.push_back(stoi(params_str.substr(0, found)));
        params_str = params_str.substr(found + 1);
    }
    p.push_back(stoi(params_str));
    return p;
}

vector<vector<int>> v;
vector<int> p;
vector<vector<int>> split_2_dimention(string s) {
    s += "  ";//防止最后一个]后面没有元素所导致的越界
    while (s.find("]") != string::npos) {
        int found_right = s.find("]");
        string s1 = s.substr(1, found_right - 1);
        p = split(s1);
        v.push_back(p);
        s = s.substr(found_right + 2);//取第二个vector,这里可能会越界
        p.clear();
    }
    return v;
}

int main() {
    string input;
    getline(cin, input);//[[0,0,0],[0,1,0],[0,0,0]]
    string input_str = input.substr(1, input.size() - 2);
    vector<vector<int>> dp;
    dp = split_2_dimention(input_str);
    Solution a;
    cout << a.uniquePathsWithObstacles(dp);
}

复杂度分析

时间复杂度:O(nm),其中 n 为网格的行数,m 为网格的列数。我们只需要遍历所有网格一次即可。

空间复杂度:O(m)。利用滚动数组优化,我们可以只用 O(m) 大小的空间来记录当前行的 f 值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值