Hadoop基础知识

本文介绍了Hadoop的基础知识,包括大数据的特点和计算模式,重点讲解了Hadoop框架及其主要模块:HDFS、MapReduce和YARN。HDFS是分布式文件系统,适合海量数据存储,而MapReduce是用于大数据离线分析的计算模型。文章还探讨了HDFS的优缺点以及读写原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.大数据技术架构

2.大数据特点:海量性(volume)、多样行(variety)、高速性(velocity)、价值性(value)。

3.大数据的计算模式:批处理计算(mapreduce)、查询分析计算(hive)、流计算(spark、storm) 、图计算。

主要分两大类:离线计算(如mapreduce)、实时计算(如 spark、storm)。

 

4.Hadoop框架

hadoop是一个高可靠、可伸缩的分布式计算框架。用于大数据存储 (HDFS)、计算(MapReduce)、分析的分布式存储系统及分布式计算框架。hadoop框架提供了大数据的海量存储及分布式计算服务。

hadoop主要模块

1)common:封装了大量API,为hadoop框架提供操作基础。

2)HDSF:hadoop的分布式文件系统。存储海量数据。

3)MapReduce:分布式计算模型。用于大数据的离线分析。

4)yarn:分布式计算平台。可运行mapreduce、hive、spark、storm等计算框架。

 

5.HDFS分布式文件系统:属于主从(Master/Slave)关系的结构模型。分布式存储海量TB级以上数据,一次写入,多次查询。注意,不支持并发写入。不支持从某个数据节点开始查询数据。

HDFS适合存储大文件数据,一般一个文件大小为几百兆。不适合存储小文件(因为会占用过多的namenode的命名空间,使得namenode的存储内存达到峰值瓶颈)。

1)NameNode:即名称节点。负责管理文件系统的命名空间及客户端对文件的访问(读写请求、创建、删除、复制数据块等操作)。作为主节点 ,整个集群只能有一个。NameNode上的数据信息在启动后会加载到内存中(提供运行效率),如果节点宕机则会丢失元数据等。可以通过配置

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值