1.大数据技术架构
2.大数据特点:海量性(volume)、多样行(variety)、高速性(velocity)、价值性(value)。
3.大数据的计算模式:批处理计算(mapreduce)、查询分析计算(hive)、流计算(spark、storm) 、图计算。
主要分两大类:离线计算(如mapreduce)、实时计算(如 spark、storm)。
4.Hadoop框架
hadoop是一个高可靠、可伸缩的分布式计算框架。用于大数据存储 (HDFS)、计算(MapReduce)、分析的分布式存储系统及分布式计算框架。hadoop框架提供了大数据的海量存储及分布式计算服务。
hadoop主要模块
1)common:封装了大量API,为hadoop框架提供操作基础。
2)HDSF:hadoop的分布式文件系统。存储海量数据。
3)MapReduce:分布式计算模型。用于大数据的离线分析。
4)yarn:分布式计算平台。可运行mapreduce、hive、spark、storm等计算框架。
5.HDFS分布式文件系统:属于主从(Master/Slave)关系的结构模型。分布式存储海量TB级以上数据,一次写入,多次查询。注意,不支持并发写入。不支持从某个数据节点开始查询数据。
HDFS适合存储大文件数据,一般一个文件大小为几百兆。不适合存储小文件(因为会占用过多的namenode的命名空间,使得namenode的存储内存达到峰值瓶颈)。
1)NameNode:即名称节点。负责管理文件系统的命名空间及客户端对文件的访问(读写请求、创建、删除、复制数据块等操作)。作为主节点 ,整个集群只能有一个。NameNode上的数据信息在启动后会加载到内存中(提供运行效率),如果节点宕机则会丢失元数据等。可以通过配置