Categories

     当你想要为某个 class 新增 methods,你通常会扩充(extend,即继承)它。然而这不一定是个完美解法,特别是你想要重写一个 class 的某个功能,但你却没有原始码时。Categories 允许你在现有的 class 加入新功能,但不需要扩充它。Ruby 语言也有类似的功能。

 

 

 重点是 @implementation 跟 @interface 这两行:@interface Fraction (Math) 以及 @implementation Fraction (Math).(同一个 class)只能有一个同名的 category,其他的 categories 得加上不同的、独一无二的名字。

 Categories 在建立 private methods 时十分有用。因为 Objective-C 并没有像 Java 这种 private/protected/public methods 的概念,所以必须要使用 categories 来达成这种功能。作法是把 private method 从你的 class header (.h) 档案移到 implementation (.m) 档案。以下是此种作法一个简短的范例。

 


 

### 关于 Categories 的定义与处理 在编程和数据结构中,`categories` 是指分类变量(categorical variables),它们用于表示离散的数据类别而非连续数值。这些变量可以进一步细分为二元响应(binary)、有序等级评分(ordinal)或名义类别(nominal)。以下是关于 `categories` 的具体描述及其常见处理方法: #### 类别的基本概念 Categories 表示的是分组信息,在数据分析领域非常普遍。例如性别(male/female/non-binary)就是一个典型的类别型变量[^1]。 #### 处理 Categorical Variables 的常用技术 为了使机器学习模型能够理解并有效利用类别型变量,通常会采用一些转换手段将其映射到数值形式。常见的做法有以下几种: - **One-Hot 编码**: 将每一个可能的取值转化为独立的新特征列,并通过布尔值来指示原始样本属于哪个类別[^2]。 ```python import pandas as pd data = {'Gender': ['Male', 'Female', 'Non-Binary']} df = pd.DataFrame(data) one_hot_encoded_df = pd.get_dummies(df['Gender'], prefix='Gender') print(one_hot_encoded_df) ``` 上述代码展示了如何使用 Pandas 库实现简单的 One-Hot 编码过程。 - **Dummy 变量转化**: 这种方式类似于 One-Hot 编码,但它会在最终结果集中移除其中一个编码后的维度以防止多重共线性问题发生。 除了以上提到的技术外,还有其他高级策略比如嵌入层(embedding layers),主要用于深度神经网络架构下对高维稀疏矩阵的有效表达。 #### 性能优化考虑因素 当涉及到大规模内存操作时,尤其是针对大数据集中的 category 数据进行预处理阶段,需注意减少不必要的序列化/反序列化的开销以及合理规划内部存储格式[^3]。压缩算法如 Snappy 或者 LZ4 能够帮助降低实际传输过程中所需占用的空间大小从而提升整体效率。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值