
学习资料汇总
文章平均质量分 92
Just Jump
勿忘来时路上的脚印。站在巨人的肩膀上。
你没有比别人更努力,更不会比别人更不努力。你只是按照你能做到的、最适合你自己的办法去实现自己的目标,去成长为你眼中优秀的人们中的一员。
你自己、优秀的人群;决心、视野;自律、标准。
业精于勤,行成于思。
古之成大事者,不惟有超世之才,亦必有坚韧不拔之志。
苟有恒,何必三更起五更眠;最无益,只怕一日曝十日寒。 十五年只做一个行当。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【转】成为机器学习大家,你不能不懂数学
2018-09-06|作者:陈薇编者按:如何自学机器学习?需要哪些数理基础?怎样从入门到进阶,成就大神之路?对于这些问题,作为毕业后投身机器学习研究的数学博士、微软亚洲研究院机器学习组主管研究员陈薇无疑是最有发言权的。在这篇书单推荐中,她从机器学习综述、算法优化、理论延展、数学基础四大方面入手,为大家提供一份机器学习的“完全指南”。在这个言必谈“AI”的时代,机器学习是重要的算法内核,而数学是理解和改进机器学习算法的必经之路。因此,我将在这篇文章中梳理机器学习的关键模块和与之联系的数学理论分支,..转载 2021-12-29 15:23:42 · 350 阅读 · 0 评论 -
【转】数据挖掘,你不应该错过的六本书
2018-06-15|作者:张富峥、王英子不久前我们推出的《推荐算法不够精准?让知识图谱来解决》以及《如何将知识图谱特征学习应用到推荐系统?》系列文章受到了同学们的广泛欢迎。大家对推荐系统以及与之相关的、底层的数据挖掘技术非常关注。为了帮助小伙伴们更好地学习相关内容,我们邀请微软亚洲研究院社会计算组研究员张富峥和实习生王英子为大家推荐了六本数据挖掘领域的经典书籍,既涵盖了数据挖掘的概念、算法等基础知识,又包含了数据挖掘在不同子领域的具体应用。一起来看看吧!一、基础篇主要目标:帮助大家了解..转载 2021-12-29 12:07:24 · 5042 阅读 · 0 评论 -
【转】推荐系统原理、工程、大厂(Youtube、BAT、TMB)架构干货分享
本文汇集了关于推荐系统原理、工程、各大长推荐架构、经验相关的纯干货。原理篇整理了内容推荐、协同推荐、举证分解、模型融合、Bandit和深度学习相关的经典方法。工程篇整理了推荐系统常见架构、关键模块和效果验证相关的资源。实战部分整理了Netfix、Hulu、Youtube、Google、Amazon、BAT、TMD等各大互联网公司推荐系统实战相关的经验。本资源整理自网络,原文地址:https://github.com/gaolinjie/awesome-recommender-systems...转载 2020-08-06 21:46:29 · 793 阅读 · 0 评论 -
【转】国内外优秀的计算机视觉团队汇总
编译 | 极市平台国内高校研究团队北京清华大学:龙明盛,黄高,艾海舟,张长水(Big eyes laboratory 大眼睛实验室),丁贵广(Multimedia Intelligence Group),朱文武,朱军,苏航,鲁继文,徐枫,刘烨斌,张钹,胡事民,刘永进,孙富春,王健民,季向阳,罗建文北京大学:林宙辰,查红彬,施柏鑫,曾刚 ([email protected]),刘家瑛,穆亚东,黄铁军,段凌宇,郭宗明,连宙辉,张史梁,马思伟,袁晓如中科院:跨媒体计算研究组,肖俊中科院计..转载 2020-07-25 08:55:02 · 1970 阅读 · 0 评论 -
【转】沈向洋、华刚:读科研论文的三个层次、四个阶段与十个问题
转自知乎,微软亚洲研究院,文章《沈向洋、华刚:读科研论文的三个层次、四个阶段与十个问题》作者:微软亚洲研究院链接:https://zhuanlan.zhihu.com/p/163227375来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。下面,我们将与大家分享沈向洋博士和华刚博士的演讲,希望为做科研的你带来思考和启发。沈向洋美国国家工程院外籍院士英国皇家工程院外籍院士微软公司前执行副总裁沈向洋博士主要专注于计算机、视觉、图形学、人..转载 2020-07-24 15:17:32 · 1009 阅读 · 0 评论 -
【转】6个超酷的网站,专门用于学习算法
来自:程序员书库(ID:CodingBook)书单来自:https://levelup.gitconnected.com/6-super-cool-websites-for-practicing-algorithms-learning-programming-4cda65a64b7e最近一位有着15年经验的老程序员和我们他认为最酷的6个学习编程/算法的网站,以下为他的博客原文:我是一位拥有15年工作经验的程序员,从高中毕业的第一年就开始学习算法,毕业之后出国留学,便走上了算法研究道路。.转载 2020-07-24 15:06:23 · 529 阅读 · 0 评论 -
【转】机器学习必读TOP 100论文清单:高引用、分类全、覆盖面广丨GitHub 21.4k星
想要入门机器学习,奈何领域的新论文太多,不知道该看哪一篇?自2017年以来,超越SOTA的方法天天有,但往往针对性非常强,不一定是颠覆机器学习圈的重要成果。又回到了熟悉的话题:要想入行,还得看高引用经典论文。这里整合了2012年到2016年的高引TOP 100论文,引用量要求随着年份递减而递增,Hinton、Bengio、何恺明等大牛的论文都在其中,一起来看看吧:清单列表理解、泛化、迁移学习1、Distilling the knowledge in a neural ne...转载 2020-07-19 19:28:36 · 370 阅读 · 0 评论 -
【转】吴恩达教你如何读论文:绘制进度表格,论文至少看三遍,还要问自己问题
转载 |量子位吴恩达教你如何读论文,高效了解新领域。就算是博士,也很难对所有的关键技术都参透了解。那么如何有效了解一个新领域,是研究者们必备的一项技能。最近,一位博主就亲身示范了吴恩达的方法,在Medium上,两天即获得1.7k赞。方法具体如何呢?我们就以「姿态估计」这一技术为例,来介绍一下这个方法吧。系统阅读论文集既然有了目标,第一步收集资源,并整合起来。论文、博客文章、GitHub资源库、视频……在谷歌上搜索「姿态估计」这个词,得到所有关于这个关键词的资源都要整理下.转载 2020-07-05 19:51:03 · 384 阅读 · 0 评论