AtCoder Beginner Contest 383 E、F

AtCoder Beginner Contest 383 E、F

E - Sum of Max Matching

分析

首先明确题目的定义:

  • 路径长度:从 x x x y y y简单路径上最大的边权即为该路径长度
  • f ( x , y ) f(x,y) f(x,y):从 x x x y y y的最小路径长度

因为题目给的两个 A A A B B B序列里元素不存在相等的,也就是划分成了两个点集
最后要你可以随意排序,得到最小的 ∑ i = 1 K f ( A i , B i ) \sum_{i=1}^{K} f(A_{i},B_{i}) i=1Kf(Ai,Bi)
这是一类很经典的问题,给定一些询问,在 x x x y y y之间有很多路径,要你找到最小的那一条或他们的和最小
首先要想到的是 x x x y y y之间可能存在很多路径,基于贪心的思想,那肯定是最大的边权越小越好,因此把所有边先按照边权大小进行排序。假设当前的每一个点都是独立的点,根据Kruskal求最小生成树的方法,把边两端的点依次加到集合里,这样在确保 x x x能走到 y y y的前提下,也保证了当前的简单路径上的边权一定都是最小的
基于上述思考,那么问题仿佛就迎刃而解了。
e d g e [ i ] [ 0 ] edge[i][0] edge[i][0]为边权, e d g e [ i ] [ 1 ] edge[i][1] edge[i][1] e d g e [ i ] [ 2 ] edge[i][2] edge[i][2]为边连接的两个点, a a a b b b数组分别记录序列 A A A B B B中编号为 i i i的点的个数
这里把所有的点都存在一个并查集里,但每个集合的个数还是按照 A A A B B B分别记录,方便我们计算。值得注意的是,尽管 A A A B B B的点都连在一个并查集里,我们还要考虑的是连了当前这条边,会产生三种情况

  • A A A集合里的两个点连在了一起
  • B B B集合里的两个点连在了一起
  • A A A集合里的一个点和 B B B集合里的一个点连在了一起

第一种和第二种情况并不会产生代价,而第三种则会产生 当前边权 ∗ m i n ( a [ f b ] , b [ f b ] ) 当前边权*min(a[fb],b[fb]) 当前边权min(a[fb],b[fb])的代价,最后要把计算过的点从 a a a b b b数组中删除,保证 a [ f b ] a[fb] a[fb] b [ f b ] b[fb] b[fb]中至少有一个是0

代码
#include <bits/stdc++.h>
using namespace std;
using LL = long long;

int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    int n, m, k;
    cin >> n >> m >> k;
    vector<array<int, 3>> edge(m);
    for (int i = 0; i < m; i++) {
        cin >> edge[i][1] >> edge[i][2] >> edge[i][0];
    }
    vector<int> f(n + 1), a(n + 1), b(n + 1);
    for (int i = 1, x; i <= k; i++) {
        cin >> x;
        a[x]++;
    }
    for (int i = 1, x; i <= k; i++) {
        cin >> x;
        b[x]++;
    }
    iota(f.begin(), f.end(), 0);
    sort(edge.begin(), edge.end());
    auto getfa = [&](int x, auto &&self) -> int {
        return x == f[x] ? x : f[x] = self(f[x], self);
    };
    LL ans = 0;
    for (int i = 0; i < m; i++) {
        int fa = getfa(edge[i][1], getfa), fb = getfa(edge[i][2], getfa);
        if (fa != fb) {
            f[fa] = fb;
            a[fb] += a[fa];
            b[fb] += b[fa];
            int minn = min(a[fb], b[fb]);
            a[fb] -= minn;
            b[fb] -= minn;
            ans += 1LL * minn * edge[i][0];
        }
    }
    cout << ans << '\n';
    return 0;
}

F - Diversity

分析

根据题意不难发现,每种物品只有选与不选,需要记录的状态有:物品颜色的种类、物品颜色的价值,要求的最大值是所有物品的 ∑ u t i l i t y + K ∗ ( 物品颜色种类 ) \sum utility + K * (物品颜色种类) utility+K(物品颜色种类)
其中设 a [ i ] [ 0 ] a[i][0] a[i][0]为物品颜色, a [ i ] [ 1 ] a[i][1] a[i][1]为物品价格, a [ i ] [ 2 ] a[i][2] a[i][2]为物品的 u t i l i t y utility utility,不难发现的是如果选过了当前颜色,那么价值就是 a [ i ] [ 2 ] a[i][2] a[i][2],如果没选过当前颜色,价值就是 K + a [ i ] [ 2 ] K+a[i][2] K+a[i][2]
可以先设一个 d p dp dp方程,令 d p [ i ] [ j ] dp[i][j] dp[i][j]为前 i i i个物品里面,一共拿了价值为 j j j的物品的最大价值,但发现这里面少了一维,没法记录当前有多少种颜色数,但现在空间复杂度已经到了 O ( n x ) O(nx) O(nx),因为只需要颜色种类个数,而不需要知道拿了哪些颜色,所以可以根据颜色进行排序,再在 d p dp dp数组添加一维 0 / 1 0/1 0/1表示当前这种颜色拿没拿过,即 d p [ i ] [ j ] [ k ( 0 / 1 ) ] dp[i][j][k(0/1)] dp[i][j][k(0/1)]
转移方程先考虑如果当前第 i i i个物品不拿,那么显然
d p [ i ] [ j ] [ 0 ] = m a x ( d p [ i ] [ j ] [ 0 ] , d p [ i − 1 ] [ j ] [ 0 ] ) dp[i][j][0]=max(dp[i][j][0], dp[i-1][j][0]) dp[i][j][0]=max(dp[i][j][0],dp[i1][j][0])
再考虑如果前面一个物品的颜色和当前物品的颜色一样的话,不难得到
d p [ i ] [ j ] [ 1 ] = m a x ( d p [ i ] [ j ] [ 1 ] , d p [ i − 1 ] [ j ] [ 1 ] ) dp[i][j][1]=max(dp[i][j][1], dp[i-1][j][1]) dp[i][j][1]=max(dp[i][j][1],dp[i1][j][1])
最后考虑如果前面一个物品和当前物品颜色不一样,得到
d p [ i ] [ j ] [ 0 ] = m a x ( d p [ i ] [ j ] [ 0 ] , d p [ i − 1 ] [ j ] [ 1 ] ) dp[i][j][0]=max(dp[i][j][0], dp[i-1][j][1]) dp[i][j][0]=max(dp[i][j][0],dp[i1][j][1])
因此,如果当前第 i i i个物品我们不拿,那么更新答案KaTeX parse error: Expected '}', got 'EOF' at end of input: …], dp[i][j][1])
再考虑拿当前第 i i i个物品,显然有
d p [ i ] [ j ] [ 1 ] = m a x ( d p [ i ] [ j ] [ 1 ] , d p [ i − 1 ] [ j − a [ i ] [ 1 ] ] [ 0 ] + a [ i ] [ 2 ] + K ) dp[i][j][1]=max(dp[i][j][1], dp[i-1][j-a[i][1]][0]+a[i][2]+K) dp[i][j][1]=max(dp[i][j][1],dp[i1][ja[i][1]][0]+a[i][2]+K)
再考虑如果前面一个物品和当前物品的颜色一样的话,不难得到
d p [ i ] [ j ] [ 1 ] = m a x ( d p [ i ] [ j ] [ 1 ] , d p [ i − 1 ] [ j − a [ i ] [ 1 ] ] [ 1 ] + a [ i ] [ 2 ] ) dp[i][j][1]=max(dp[i][j][1], dp[i-1][j-a[i][1]][1]+a[i][2]) dp[i][j][1]=max(dp[i][j][1],dp[i1][ja[i][1]][1]+a[i][2])
否则一定会多出一种颜色种数
d p [ i ] [ j ] [ 1 ] = m a x ( d p [ i ] [ j ] [ 1 ] , d p [ i − 1 ] [ j − a [ i ] [ 1 ] ] [ 1 ] + K + a [ i ] [ 2 ] ) dp[i][j][1]=max(dp[i][j][1],dp[i-1][j-a[i][1]][1]+K+a[i][2]) dp[i][j][1]=max(dp[i][j][1],dp[i1][ja[i][1]][1]+K+a[i][2])
再更新答案即可

代码
#include <bits/stdc++.h>
using namespace std;
using LL = long long;
array<int, 3> a[510];
LL dp[510][50010][2];
int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    int n, x, K;
    cin >> n >> x >> K;
    for (int i = 1; i <= n; i++) {
        cin >> a[i][1] >> a[i][2] >> a[i][0];
    }
    sort(a + 1, a + 1 + n);
    dp[1][a[1][1]][1] = K + a[1][2];
    LL ans = dp[1][a[1][1]][1];
    for (int i = 2; i <= n; i++) {
        for (int j = 0; j <= x; j++) {
            dp[i][j][0] = max(dp[i][j][0], dp[i - 1][j][0]);
            if (a[i][0] != a[i - 1][0]) {
                dp[i][j][0] = max(dp[i][j][0], dp[i - 1][j][1]);
            } else {
                dp[i][j][1] = max(dp[i][j][1], dp[i - 1][j][1]);
            }
            ans = max({ans, dp[i][j][0], dp[i][j][1]});
        }
        for (int j = a[i][1]; j <= x; j++) {
            dp[i][j][1] = max(dp[i][j][1], dp[i - 1][j - a[i][1]][0] + K + a[i][2]);
            if (a[i][0] == a[i - 1][0]) {
                dp[i][j][1] = max(dp[i][j][1], dp[i - 1][j - a[i][1]][1] + a[i][2]);
            } else {
                dp[i][j][1] = max(dp[i][j][1], dp[i - 1][j - a[i][1]][1] + K + a[i][2]);
            }
            ans = max({ans, dp[i][j][1], dp[i][j][0]});
        }
    }
    cout << ans << '\n';
    return 0;
}

保研结束后宕机了两个月,继续训起来,后续也会更新一些技术学习笔记

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值