AtCoder Beginner Contest 383 E、F
E - Sum of Max Matching
分析
首先明确题目的定义:
- 路径长度:从 x x x到 y y y简单路径上最大的边权即为该路径长度
- f ( x , y ) f(x,y) f(x,y):从 x x x到 y y y的最小路径长度
因为题目给的两个
A
A
A、
B
B
B序列里元素不存在相等的,也就是划分成了两个点集
最后要你可以随意排序,得到最小的
∑
i
=
1
K
f
(
A
i
,
B
i
)
\sum_{i=1}^{K} f(A_{i},B_{i})
∑i=1Kf(Ai,Bi)
这是一类很经典的问题,给定一些询问,在
x
x
x和
y
y
y之间有很多路径,要你找到最小的那一条或他们的和最小
首先要想到的是
x
x
x和
y
y
y之间可能存在很多路径,基于贪心的思想,那肯定是最大的边权越小越好,因此把所有边先按照边权大小进行排序。假设当前的每一个点都是独立的点,根据Kruskal求最小生成树的方法,把边两端的点依次加到集合里,这样在确保
x
x
x能走到
y
y
y的前提下,也保证了当前的简单路径上的边权一定都是最小的
基于上述思考,那么问题仿佛就迎刃而解了。
令
e
d
g
e
[
i
]
[
0
]
edge[i][0]
edge[i][0]为边权,
e
d
g
e
[
i
]
[
1
]
edge[i][1]
edge[i][1]和
e
d
g
e
[
i
]
[
2
]
edge[i][2]
edge[i][2]为边连接的两个点,
a
a
a和
b
b
b数组分别记录序列
A
A
A和
B
B
B中编号为
i
i
i的点的个数
这里把所有的点都存在一个并查集里,但每个集合的个数还是按照
A
A
A和
B
B
B分别记录,方便我们计算。值得注意的是,尽管
A
A
A和
B
B
B的点都连在一个并查集里,我们还要考虑的是连了当前这条边,会产生三种情况
- 把 A A A集合里的两个点连在了一起
- 把 B B B集合里的两个点连在了一起
- 把 A A A集合里的一个点和 B B B集合里的一个点连在了一起
第一种和第二种情况并不会产生代价,而第三种则会产生 当前边权 ∗ m i n ( a [ f b ] , b [ f b ] ) 当前边权*min(a[fb],b[fb]) 当前边权∗min(a[fb],b[fb])的代价,最后要把计算过的点从 a a a和 b b b数组中删除,保证 a [ f b ] a[fb] a[fb]和 b [ f b ] b[fb] b[fb]中至少有一个是0
代码
#include <bits/stdc++.h>
using namespace std;
using LL = long long;
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int n, m, k;
cin >> n >> m >> k;
vector<array<int, 3>> edge(m);
for (int i = 0; i < m; i++) {
cin >> edge[i][1] >> edge[i][2] >> edge[i][0];
}
vector<int> f(n + 1), a(n + 1), b(n + 1);
for (int i = 1, x; i <= k; i++) {
cin >> x;
a[x]++;
}
for (int i = 1, x; i <= k; i++) {
cin >> x;
b[x]++;
}
iota(f.begin(), f.end(), 0);
sort(edge.begin(), edge.end());
auto getfa = [&](int x, auto &&self) -> int {
return x == f[x] ? x : f[x] = self(f[x], self);
};
LL ans = 0;
for (int i = 0; i < m; i++) {
int fa = getfa(edge[i][1], getfa), fb = getfa(edge[i][2], getfa);
if (fa != fb) {
f[fa] = fb;
a[fb] += a[fa];
b[fb] += b[fa];
int minn = min(a[fb], b[fb]);
a[fb] -= minn;
b[fb] -= minn;
ans += 1LL * minn * edge[i][0];
}
}
cout << ans << '\n';
return 0;
}
F - Diversity
分析
根据题意不难发现,每种物品只有选与不选,需要记录的状态有:物品颜色的种类、物品颜色的价值,要求的最大值是所有物品的
∑
u
t
i
l
i
t
y
+
K
∗
(
物品颜色种类
)
\sum utility + K * (物品颜色种类)
∑utility+K∗(物品颜色种类)
其中设
a
[
i
]
[
0
]
a[i][0]
a[i][0]为物品颜色,
a
[
i
]
[
1
]
a[i][1]
a[i][1]为物品价格,
a
[
i
]
[
2
]
a[i][2]
a[i][2]为物品的
u
t
i
l
i
t
y
utility
utility,不难发现的是如果选过了当前颜色,那么价值就是
a
[
i
]
[
2
]
a[i][2]
a[i][2],如果没选过当前颜色,价值就是
K
+
a
[
i
]
[
2
]
K+a[i][2]
K+a[i][2]
可以先设一个
d
p
dp
dp方程,令
d
p
[
i
]
[
j
]
dp[i][j]
dp[i][j]为前
i
i
i个物品里面,一共拿了价值为
j
j
j的物品的最大价值,但发现这里面少了一维,没法记录当前有多少种颜色数,但现在空间复杂度已经到了
O
(
n
x
)
O(nx)
O(nx),因为只需要颜色种类个数,而不需要知道拿了哪些颜色,所以可以根据颜色进行排序,再在
d
p
dp
dp数组添加一维
0
/
1
0/1
0/1表示当前这种颜色拿没拿过,即
d
p
[
i
]
[
j
]
[
k
(
0
/
1
)
]
dp[i][j][k(0/1)]
dp[i][j][k(0/1)]
转移方程先考虑如果当前第
i
i
i个物品不拿,那么显然
d
p
[
i
]
[
j
]
[
0
]
=
m
a
x
(
d
p
[
i
]
[
j
]
[
0
]
,
d
p
[
i
−
1
]
[
j
]
[
0
]
)
dp[i][j][0]=max(dp[i][j][0], dp[i-1][j][0])
dp[i][j][0]=max(dp[i][j][0],dp[i−1][j][0])
再考虑如果前面一个物品的颜色和当前物品的颜色一样的话,不难得到
d
p
[
i
]
[
j
]
[
1
]
=
m
a
x
(
d
p
[
i
]
[
j
]
[
1
]
,
d
p
[
i
−
1
]
[
j
]
[
1
]
)
dp[i][j][1]=max(dp[i][j][1], dp[i-1][j][1])
dp[i][j][1]=max(dp[i][j][1],dp[i−1][j][1])
最后考虑如果前面一个物品和当前物品颜色不一样,得到
d
p
[
i
]
[
j
]
[
0
]
=
m
a
x
(
d
p
[
i
]
[
j
]
[
0
]
,
d
p
[
i
−
1
]
[
j
]
[
1
]
)
dp[i][j][0]=max(dp[i][j][0], dp[i-1][j][1])
dp[i][j][0]=max(dp[i][j][0],dp[i−1][j][1])
因此,如果当前第
i
i
i个物品我们不拿,那么更新答案KaTeX parse error: Expected '}', got 'EOF' at end of input: …], dp[i][j][1])
再考虑拿当前第
i
i
i个物品,显然有
d
p
[
i
]
[
j
]
[
1
]
=
m
a
x
(
d
p
[
i
]
[
j
]
[
1
]
,
d
p
[
i
−
1
]
[
j
−
a
[
i
]
[
1
]
]
[
0
]
+
a
[
i
]
[
2
]
+
K
)
dp[i][j][1]=max(dp[i][j][1], dp[i-1][j-a[i][1]][0]+a[i][2]+K)
dp[i][j][1]=max(dp[i][j][1],dp[i−1][j−a[i][1]][0]+a[i][2]+K)
再考虑如果前面一个物品和当前物品的颜色一样的话,不难得到
d
p
[
i
]
[
j
]
[
1
]
=
m
a
x
(
d
p
[
i
]
[
j
]
[
1
]
,
d
p
[
i
−
1
]
[
j
−
a
[
i
]
[
1
]
]
[
1
]
+
a
[
i
]
[
2
]
)
dp[i][j][1]=max(dp[i][j][1], dp[i-1][j-a[i][1]][1]+a[i][2])
dp[i][j][1]=max(dp[i][j][1],dp[i−1][j−a[i][1]][1]+a[i][2])
否则一定会多出一种颜色种数
d
p
[
i
]
[
j
]
[
1
]
=
m
a
x
(
d
p
[
i
]
[
j
]
[
1
]
,
d
p
[
i
−
1
]
[
j
−
a
[
i
]
[
1
]
]
[
1
]
+
K
+
a
[
i
]
[
2
]
)
dp[i][j][1]=max(dp[i][j][1],dp[i-1][j-a[i][1]][1]+K+a[i][2])
dp[i][j][1]=max(dp[i][j][1],dp[i−1][j−a[i][1]][1]+K+a[i][2])
再更新答案即可
代码
#include <bits/stdc++.h>
using namespace std;
using LL = long long;
array<int, 3> a[510];
LL dp[510][50010][2];
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int n, x, K;
cin >> n >> x >> K;
for (int i = 1; i <= n; i++) {
cin >> a[i][1] >> a[i][2] >> a[i][0];
}
sort(a + 1, a + 1 + n);
dp[1][a[1][1]][1] = K + a[1][2];
LL ans = dp[1][a[1][1]][1];
for (int i = 2; i <= n; i++) {
for (int j = 0; j <= x; j++) {
dp[i][j][0] = max(dp[i][j][0], dp[i - 1][j][0]);
if (a[i][0] != a[i - 1][0]) {
dp[i][j][0] = max(dp[i][j][0], dp[i - 1][j][1]);
} else {
dp[i][j][1] = max(dp[i][j][1], dp[i - 1][j][1]);
}
ans = max({ans, dp[i][j][0], dp[i][j][1]});
}
for (int j = a[i][1]; j <= x; j++) {
dp[i][j][1] = max(dp[i][j][1], dp[i - 1][j - a[i][1]][0] + K + a[i][2]);
if (a[i][0] == a[i - 1][0]) {
dp[i][j][1] = max(dp[i][j][1], dp[i - 1][j - a[i][1]][1] + a[i][2]);
} else {
dp[i][j][1] = max(dp[i][j][1], dp[i - 1][j - a[i][1]][1] + K + a[i][2]);
}
ans = max({ans, dp[i][j][1], dp[i][j][0]});
}
}
cout << ans << '\n';
return 0;
}
保研结束后宕机了两个月,继续训起来,后续也会更新一些技术学习笔记