
数学
文章平均质量分 82
伍叁壹_
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
数论 · 幂函数求导
前言 TC 讲课笔记。 正文 定义一个幂函数:f(x)=a1xb1+a2xb2+⋯+anxbn+Cf(x)=a_1x^{b_1} + a_2x^{b_2} + \cdots + a_nx^{b_n} +Cf(x)=a1xb1+a2xb2+⋯+anxbn+C。(CCC 为常数。) 导数:反映一个函数的变化快慢。 对于一个一次函数: f(x)=kx+bf(x)=kx+bf(x)=kx+b,那么它的导数就是 kkk——kkk 反应了这条直线上的点的变化快慢,kkk 越大,yyy 值的变化越大。原创 2022-05-05 13:55:42 · 2238 阅读 · 0 评论 -
CF1603B Moderate Modular Mode 题解
提供一种分类讨论的做法。 思路 对于输入的 xxx 和 yyy,会有一下三种情况: x>yx>yx>y 易得,此时 n←x+yn \gets x+yn←x+y 是符合条件的: (x+y)mod x=y=ymod (x+y)(x + y) \mod x = y = y \mod (x +y)(x+y)modx=y=ymod(x+y) x=yx = yx=y 易得,此时 n←xn \gets xn←x 是符合条件的(证明略)。 x<yx<yx<y 我们发现,原创 2022-03-19 08:26:31 · 214 阅读 · 0 评论 -
UVA756 Biorhythms 题解
UVA756 Biorhythms - 传送门 思路 直接来看,它就是一个中国剩余定理(CRT)。 但与【模板】中国剩余定理(CRT) 不同的是,它已经给出了所有的模数。 在 CRT 思想的基础上,我们可以求出每一个模数对应的正整数 aaa,使得(以第二个模数为例): {a≡0(mod23)a≡1(mod28)a≡0(mod33) \begin{cases}a\equiv{0}\pmod{23}\\a\equiv{1}\pmod{28}\\a\equiv{0}\pmod{33}\end{cases} ⎩⎪⎨原创 2022-03-19 08:25:02 · 206 阅读 · 0 评论 -
【LG-P2257】 YY的GCD
P2257 YY的GCD 给定 NNN, MMM,求 1≤x≤N1 \leq x \leq N1≤x≤N,1≤y≤M1 \leq y \leq M1≤y≤M 且 gcd(x,y)\gcd(x, y)gcd(x,y) 为质数的 (x,y)(x, y)(x,y) 有多少对。 推柿子:(n≤mn\leq mn≤m) ∑i=1n∑j=1m[gcd(i,j)=k] k∈prime\sum_{i=1}^n\sum_{j=1}^m[\gcd(i,j)=k]\ k\in prime∑i=1n∑j=1m[原创 2022-03-18 13:07:40 · 77 阅读 · 0 评论 -
【LG-P4449】于神之怒加强版
P4449 于神之怒加强版 给定 n,m,kn,m,kn,m,k,计算 ∑i=1n∑j=1mgcd(i,j)k\sum_{i=1}^n \sum_{j=1}^m \gcd(i,j)^k∑i=1n∑j=1mgcd(i,j)k 对 109+710^9 + 7109+7 取模的结果。 推柿子: 假设 n≤mn\le mn≤m ∑i=1n∑j=1mgcd(i,j)k\sum_{i=1}^n \sum_{j=1}^m \gcd(i,j)^k∑i=1n∑j=1mgcd(i,j)k =∑d=1ndk∑i=.原创 2022-03-17 13:03:57 · 113 阅读 · 0 评论 -
【LG-P3704 [SDOI2017]】数字表格
P3704 [SDOI2017]数字表格 设 fff 为斐波那契函数,求 ∏i=1n∏j=1mfgcd(i,j)\prod_{i=1}^n\prod_{j=1}^mf_{\gcd(i,j)}i=1∏nj=1∏mfgcd(i,j) 推柿子: 设 n≤mn\leq mn≤m。 ∏i=1n∏j=1mfgcd(i,j)\prod_{i=1}^n\prod_{j=1}^mf_{\gcd(i,j)}∏i=1n∏j=1mfgcd(i,j) =∏d=1nf(d)∏i=1[nd]∏j=1[md][gcd(原创 2022-03-17 13:02:33 · 76 阅读 · 0 评论 -
数论 · 逆元
前言 针对比赛学的一点点逆元,在这里记录一下其中一种方法。 当然求逆元的方法有很多种,之后学到再回来写。 —— 2021.8.24 UPDATE 2021 - 11 - 25 填坑。 添加了两种求逆元的方法 + 修改了一些写得不好(难看至极)的地方 2021 - 12 - 01 补充了欧拉定理的证明。 定义 若 ax≡1(modb)ax \equiv 1\pmod bax≡1(modb) 且 a⊥ba\perp ba⊥b(a,b 互质), 则称 xxx 为 aaa 的逆元。 一、费马小定理 +原创 2022-03-21 12:43:32 · 166 阅读 · 0 评论 -
数论 · 最大公因数 + 裴蜀定理
1 最大公因数 gcd $ n = \prod p_i ^ {t1_i}\ m = \prod p_i ^ {t2 ^ i} $ gcd(n,m)=∏pimin(t1i,t2i)\gcd (n, m) = \prod p_i ^ {\min (t1_i, t2_i)}gcd(n,m)=∏pimin(t1i,t2i) 代码实现 #include<bits/stdc++.h> using namespace std; int n, m; inline int gcd (int a,原创 2022-02-25 19:03:55 · 378 阅读 · 0 评论 -
数论 · 中国剩余定理(CRT)
UPDATE 2021 - 12 - 10:补充扩展中国剩余定理 EXCRT,额外开了一篇博客写。 2021 - 12 - 21:修改了一两句话,更严谨一些。 问题概述 小奥里的韩信点兵问题: {x≡a1(modm1)x≡a2(modm2)⋯x≡ak(modmk)\begin{cases}x\equiv{a_1}\pmod{m_1}\\x\equiv{a_2}\pmod{m_2}\\\cdots\\x\equiv{a_k}\pmod{m_k}\end{cases}⎩⎪⎪⎪⎨⎪⎪⎪⎧x≡a1(原创 2022-02-25 19:02:48 · 494 阅读 · 0 评论 -
数论 · 扩展欧几里得算法
问题 扩展欧几里得算法是用来在已知 (a,b)(a,b)(a,b) 时,求解一组 (p,q)(p,q)(p,q),使得 p×a+q×b=gcd(a,b) p \times a + q \times b = \gcd (a, b) p×a+q×b=gcd(a,b) 求解 首先,解一定存在(证明略)。 其次,由 gcd(a,b)=gcd(b,a mod b)\gcd (a, b) = \gcd (b,a\bmod b)gcd(a,b)=gcd(b,amodb) 可得: p′×a+q′×b=gcd(b,a原创 2022-02-25 19:02:19 · 382 阅读 · 0 评论 -
数论 · 求解线性同余方程
问题 求解方程 ax+by=cax+by=cax+by=c。 以下摘自一本通 1 求特解 定理 对于该方程,它等价于 ax≡c(modb)ax \equiv c \pmod bax≡c(modb)。 即有整数解的充要条件就是:gcd(a,b)≡0(modc)\gcd (a,b) \equiv 0 \pmod cgcd(a,b)≡0(modc)。 求解 根据定理,我们可以先用 扩展欧几里得算法 求出一组解 x0,y0x_0,y_0x0,y0,即 a∗x0+b∗y0=gcd(a,b)a*x_0+b*y_原创 2022-02-25 19:01:46 · 357 阅读 · 0 评论 -
数论 · 欧拉定理
UPDATE 2021 - 12 - 02:添加了扩展欧拉定理。 2022 - 01 - 11:添加了欧拉反演。 扩欧拉证明,待填坑。 1 欧拉函数 φ(n)\varphi(n)φ(n) 表示小于等于 nnn 的数中与 nnn 互质的数的数目。 举例:φ(8)=4\varphi(8)=4φ(8)=4,分别是:1、3、5、7。 注意:φ(1)=1\varphi(1)=1φ(1)=1。 引理 1 引理 1.1:当 nnn 为质数时,有 φ(n)=n−1\varphi (n)=n-1φ(n)=n−原创 2022-02-25 19:01:15 · 356 阅读 · 0 评论 -
数论 · Lucas 定理
前言 在 A 了 Lucas 模板之后,十几天才弄懂证明。 UPDATE 2021 - 12 - 25:学习了 exLucas 详见 数论 · exLucas 定理 定理 组合数取模 对于整数 a, b, pa,\ b,\ pa, b, p(ppp 为素数),a=∑i=0kaipi, b=∑j=0kbjpja=\sum_{i=0}^ka_ip^i,\ b=\sum_{j=0}^{k}b_jp^ja=∑i=0kaipi, b=∑j=0k原创 2022-02-25 18:59:47 · 157 阅读 · 0 评论 -
数论 · 扩展中国剩余定理(EXCRT)
问题 已知有: {x≡a1(modm1)x≡a2(modm2)⋯x≡ak(modmk)\begin{cases}x\equiv{a_1}\pmod{m_1}\\x\equiv{a_2}\pmod{m_2}\\\cdots\\x\equiv{a_k}\pmod{m_k}\end{cases}⎩⎪⎪⎪⎨⎪⎪⎪⎧x≡a1(modm1)x≡a2(modm2)⋯x≡ak(modmk) 在mmm 数组的数两两不一定不互质的情况下,求 xxx 的最小非负整数解。 求解 假设我们已经求解出了前 (k−1)(原创 2022-02-25 18:59:13 · 166 阅读 · 0 评论 -
数论 · exLucas 定理
前言 终于看懂了!!!连夜丢掉卡特兰来做了两道 exLucas 的题目。 定理 作为一个没什么用的铺垫:数论 · Lucas 定理 求解 Cnm%pC_n^m \%pCnm%p(不保证 ppp 为质数)。 证明 1 先把 ppp 拆分一下:p=p1a1∗p2a2∗⋯pkakp = p_1^{a_1} * p_2^{a_2} * \cdots p_k^{a_k}p=p1a1∗p2a2∗⋯pkak。 然后逐一求解 Cnm%piaiC_n^m \% p_i^{a_i}Cnm%piai, 最后用原创 2022-02-25 18:58:39 · 229 阅读 · 0 评论 -
数论 · 欧拉反演
前言 小性质,QWQQWQQWQ。 定理 nnn 的所有因子的欧拉函数的和为 nnn。 即 ∑d∣nφ(d)=n\sum_{d|n}\varphi(d) = nd∣n∑φ(d)=n 证明 通过积性函数证明。 将所有因子的欧拉函数之和记为 σ(n)σ(n)σ(n)。 1 证明它是积性函数。 设 m⊥nm\perp nm⊥n,即它们的公因子为 1。 因为 φ\varphiφ 为积性函数,所以有: σ(n)∗σ(m)=∑p∣nφ(p)∗∑q∣mφ(q)=∑p∣n∑q∣mφ(p)∗φ(q)=∑p∣n∑q∣mφ(p原创 2022-02-25 18:57:54 · 1073 阅读 · 0 评论