编辑文章 - 博客频道 - CSDN.NET

本文深入探讨了泛化能力的概念及其在机器学习中的重要性,通过阐述如何评估学习方法的泛化能力,并介绍泛化误差的定义与上界的计算方法,帮助读者理解模型对未知数据的预测能力。文章还引用了Hoeffding不等式的应用,解释了随机变量和其期望之间的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

泛化能力

泛化误差

1什么是泛化能力

泛化能力是指由学习方法学习到的模型对未知数据的预测能力

2如何评价学习方法的泛化能力

现实中采用最多的方法是利用测试集的误差来进行评价。但是由于测试集一般是有限的,因此很可能得到的评价结果不可靠。

3泛化误差(generalization error)的定义

模型对未知数据预测的误差,学习到的模型的期望风险。


泛化误差上界

1泛化误差上界叫泛化误差概率的上界,一般用来进行学习方法的泛化能力的比较。

2当样本容量增加时,泛化上界趋于0,。

3当假设空间容量增加时,模型会更难学,泛化上界变大。


hoeffding不等式:

Hoeffding's inequality provides an upper bound on the probability that the sum of random variables deviates from its expected value.

hoeffding不等式为随机变量的和偏离它的期望在概率上提供了一个上界。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值