26、聚类方法与MST聚类

聚类方法与MST聚类

1. 引言

聚类是一种无监督学习方法,旨在将数据集划分为若干个组或簇,使得同一簇内的数据对象彼此相似,而不同簇之间的对象差异较大。聚类在数据分析、模式识别、机器学习等领域有着广泛的应用。本篇文章将重点探讨聚类方法,尤其是基于最小生成树(Minimum Spanning Tree, MST)的聚类技术,并分析其在实际应用中的优势和挑战。

2. 聚类方法概述

聚类方法可以根据不同的标准进行分类,以下是几种常见的聚类算法:

2.1 K-means聚类

K-means是一种常用的聚类算法,其基本思想是将数据点划分为K个簇,每个簇由其质心(centroid)表示。算法步骤如下:

  1. 初始化:随机选择K个数据点作为初始质心。
  2. 分配:将每个数据点分配到最近的质心所属的簇。
  3. 更新:重新计算每个簇的质心。
  4. 重复:重复分配和更新步骤,直到质心不再变化或达到最大迭代次数。

2.2 层次聚类

层次聚类通过构建一棵树状结构(树状图)来表示数据点之间的关系。层次聚类又可分为凝聚层次聚类和分裂层次聚类:

  • 凝聚层次聚类 :从每个数据点单独成簇开始,逐步合并最相似的簇,直到所有数据点合并为一个簇。
  • 分裂层次聚类 :从所有数据点作为一个簇开始,逐步分裂为更小的簇,直到每个数据点独自成簇。

2.3 DBSCAN聚类

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值