引言
在处理小到中等规模的数据集时,使用本地化的文档索引可以大大提高查询的响应速度和效率。DocArray的HnswSearch
正是这样一个轻量级的文档索引实现,它将向量存储在磁盘上的hnswlib
中,并将所有其他数据存储在SQLite
中。本文将介绍如何使用DocArray HnswSearch
进行文档索引和相似性搜索,并提供实用的代码示例。
主要内容
安装和设置
在开始之前,确保安装所需的库。你需要使用以下命令安装docarray
和langchain-community
:
%pip install --upgrade --quiet "docarray[hnswlib]"
%pip install -qU langchain-community
此外,你还需要设置OpenAI API密钥以使用嵌入功能:
# import os
# from getpass import getpass
# OPENAI_API_KEY = getpass()
# os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY
由于某些地区的网络限制,开发者可能需要考虑使用API代理服务来提高访问稳定性。
使用DocArrayHnswSearch
DocArrayHnswSearch
允许我们将文档加载、嵌入并进行相似性搜索。以下是一个基本的使用示例:
from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores import DocArrayHnswSearch
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter
# 加载文档
documents = TextLoader("../../how_to/state_of_the_union.txt").load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
# 创建嵌入
embeddings = OpenAIEmbeddings()
# 创建DocArrayHnswSearch实例
db = DocArrayHnswSearch.from_documents(
docs, embeddings, work_dir="hnswlib_store/", n_dim=1536
)
相似性搜索
创建索引后,你可以进行相似性搜索:
query = "What did the president say about Ketanji Brown Jackson"
docs = db.similarity_search(query)
# 输出搜索结果
print(docs[0].page_content)
结果返回最相关的文档片段。
带有得分的相似性搜索
有时,我们需要知道相似度得分以进行更精确的分析:
docs_with_score = db.similarity_search_with_score(query)
doc, score = docs_with_score[0]
print(doc.page_content)
print("Score:", score)
得分采用余弦距离,得分越低表示两个向量越相似。
常见问题和解决方案
数据持久化问题
如果你发现存储在hnswlib
中的数据无法正确持久化,检查你的工作目录设置是否正确。此外,始终在删除临时数据后清理目录:
import shutil
shutil.rmtree("hnswlib_store")
网络访问问题
在访问OpenAI API时遇到网络问题,建议使用代理服务。
总结与进一步学习资源
本文介绍了如何使用DocArrayHnswSearch
进行高效的本地文档索引和相似性搜索。对于需要处理小到中型数据集的开发者,这是一个非常有用的工具。为了进一步学习,建议查看以下资源:
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—