题目
给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环, 边权可能为负数。
请你求出 1 号点到 n 号点的最短距离,如果无法从 1 号点走到 n 号点,则输出 impossible
。
数据保证不存在负权回路。
输入格式
第一行包含整数 n 和 m。
接下来 m 行每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。
输出格式
输出一个整数,表示 1 号点到 n 号点的最短距离。
如果路径不存在,则输出 impossible
。
数据范围
1≤n,m≤105,
图中涉及边长绝对值均不超过 10000。
输入样例:
3 3
1 2 5
2 3 -3
1 3 4
输出样例:
2
思路
其实是对bellman_ford算法的优化,不会每次更新所有边,而是只有头变的时候才更新
代码
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
const int N = 1e5 + 10;
int h[N], e[N], ne[N], d[N], w[N], idx;
int n, m;
bool st[N];//是否在queue中
void add(int x, int y, int z)
{
e[idx] = y, ne[idx] = h[x], w[idx] = z, h[x] = idx ++;
}
void spfa()
{
memset(d, 0x3f3f3f3f, sizeof d);
queue<int> q;
d[1] = 0;
q.push(1);
st[1] = true;
while(q.size())
{
int t = q.front();
q.pop();
st[t] = false;//不在队列中了
for(int i = h[t]; i != -1; i = ne[i])
{
int j = e[i], weight = w[i];
if(d[j] > d[t] + weight)
{
d[j] = d[t] + weight;
if(!st[j])
{
st[j] = true;
q.push(j);
}
}
}
}
if(d[n] > 0x3f3f3f3f / 2) puts("impossible");
else cout << d[n];
}
int main()
{
cin >> n >> m;
memset(h, -1, sizeof h);
for(int i = 0; i < m; i ++)
{
int x, y, z;
cin >> x >> y >> z;
add(x, y, z);
}
spfa();
return 0;
}