spfa求最短路(C++)

本文介绍了一种改进的Bellman-Ford算法——SPFA算法,并详细解释了如何利用该算法求解带负权边的有向图中最短路径问题。通过具体的代码实现,展示了算法的工作流程及关键步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环, 边权可能为负数

请你求出 1 号点到 n 号点的最短距离,如果无法从 1 号点走到 n 号点,则输出 impossible

数据保证不存在负权回路。

输入格式

第一行包含整数 n 和 m。

接下来 m 行每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。

输出格式

输出一个整数,表示 1 号点到 n 号点的最短距离。

如果路径不存在,则输出 impossible

数据范围

1≤n,m≤105,
图中涉及边长绝对值均不超过 10000。

输入样例:

3 3
1 2 5
2 3 -3
1 3 4

输出样例:

2

思路

其实是对bellman_ford算法的优化,不会每次更新所有边,而是只有头变的时候才更新

代码

#include<iostream>
#include<cstring>
#include<queue>

using namespace std;

const int N = 1e5 + 10;
int h[N], e[N], ne[N], d[N], w[N], idx;
int n, m;
bool st[N];//是否在queue中 

void add(int x, int y, int z)
{
	e[idx] = y, ne[idx] = h[x], w[idx] = z, h[x] = idx ++;
}

void spfa()
{
	memset(d, 0x3f3f3f3f, sizeof d);
	queue<int> q;
	d[1] = 0;
	q.push(1);
	st[1] = true;
	
	while(q.size())
	{
		int t = q.front();
		q.pop();
		
		st[t] = false;//不在队列中了 
		for(int i = h[t]; i != -1; i = ne[i])
		{
			int j = e[i], weight = w[i];
			if(d[j] > d[t] + weight)
			{
				d[j] = d[t] + weight;
				if(!st[j])
				{
					st[j] = true;
					q.push(j);	
				}	
			}	
		}	
	} 
	if(d[n] > 0x3f3f3f3f / 2) puts("impossible");
	else cout << d[n];
}

int main()
{
	cin >> n >> m;
	
	memset(h, -1, sizeof h);
	for(int i = 0; i < m; i ++)
	{
		int x, y, z;
		cin >> x >> y >> z;
		add(x, y, z);
	}
	
	spfa();
	
	return 0;	
} 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值