纳维-斯托克斯方程的有限元公式化
1 纳维-斯托克斯方程的有限元离散化
纳维-斯托克斯方程(Navier-Stokes Equations)是描述不可压缩流体流动的核心方程之一。它们在许多工程和科学领域中扮演着至关重要的角色,如航空航天、生物医学、海洋工程等。有限元方法(Finite Element Method, FEM)作为一种强大的数值工具,能够有效地处理复杂几何形状和边界条件下的纳维-斯托克斯方程。本文将详细介绍纳维-斯托克斯方程的有限元公式化,包括标准基本边界条件和弱施加的基本边界条件。
1.1 纳维-斯托克斯方程
纳维-斯托克斯方程可以表示为:
[
\frac{\partial (\rho \mathbf{u})}{\partial t} + \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u} - \sigma) - \rho \mathbf{f} = 0,
]
[
\nabla \cdot \mathbf{u} = 0,
]
其中,$\rho$ 为流体密度,$\mathbf{u}$ 为流体速度,$\mathbf{f}$ 为外力(每单位质量),$\sigma$ 为应力张量,定义为:
[
\sigma(\mathbf{u}, p) = -p \mathbf{I} + 2 \mu \epsilon(\mathbf{u}),
]
其中,$p$ 为压力,$\mathbf{I}$ 为单位张量,$\mu$ 为动力粘度,$\epsilon(\mathbf{u})$ 为应变率张量,定义为