题目背景
战争已经进入到紧要时间。你是运输小队长,正在率领运输部队向前线运送物资。运输任务像做题一样的无聊。你希望找些刺激,于是命令你的士兵们到前方的一座独木桥上欣赏风景,而你留在桥下欣赏士兵们。士兵们十分愤怒,因为这座独木桥十分狭窄,只能容纳 1 个人通过。假如有 2 个人相向而行在桥上相遇,那么他们 2 个人将无法绕过对方,只能有 1 个人回头下桥,让另一个人先通过。但是,可以有多个人同时呆在同一个位置。
题目描述
突然,你收到从指挥部发来的信息,敌军的轰炸机正朝着你所在的独木桥飞来!为了安全,你的部队必须撤下独木桥。独木桥的长度为 L,士兵们只能呆在坐标为整数的地方。所有士兵的速度都为 1,但一个士兵某一时刻来到了坐标为 0 或 L+1 的位置,他就离开了独木桥。
每个士兵都有一个初始面对的方向,他们会以匀速朝着这个方向行走,中途不会自己改变方向。但是,如果两个士兵面对面相遇,他们无法彼此通过对方,于是就分别转身,继续行走。转身不需要任何的时间。
由于先前的愤怒,你已不能控制你的士兵。甚至,你连每个士兵初始面对的方向都不知道。因此,你想要知道你的部队最少需要多少时间就可能全部撤离独木桥。另外,总部也在安排阻拦敌人的进攻,因此你还需要知道你的部队最多需要多少时间才能全部撤离独木桥。
输入格式
第一行共一个整数 L,表示独木桥的长度。桥上的坐标为 1,2,⋯,L。
第二行共一个整数 N,表示初始时留在桥上的士兵数目。
第三行共有 N 个整数,分别表示每个士兵的初始坐标。
输出格式
共一行,输出 2 个整数,分别表示部队撤离独木桥的最小时间和最大时间。2 个整数由一个空格符分开。
输入输出样例
输入 #1复制
4 2 1 3
输出 #1复制
2 4
说明/提示
对于 100% 的数据,满足初始时,没有两个士兵同在一个坐标,1≤L≤5×103,0≤N≤5×103,且数据保证 N≤L。
每个士兵选择离自己最近的桥头撤离。因此,最小时间是每个士兵到最近桥头的距离中的最大值。
每个士兵选择离自己最远的桥头撤离。因此,最大时间是每个士兵到最远桥头的距离中的最大值。
for(int i=1;i<=n;i++)
{
res1=max(res1,min(a[i],l-a[i]+1));
res2=max(res2,max(a[i],l-a[i]+1));
}
题目描述
有一个整数序列,它的每个数各不相同,我们不知道它的长度是多少(即整数个数),但我们知道在某些区间中间至少有多少个整数,用区间(Li,Ri,Ci)来描述,表示这个整数序列中至少有 Ci 个数来自区间 [Li,Ri],给出若干个这样的区间,问这个整数序列的长度最少能为多少?
输入格式
第一行一个整数 N,表示区间个数;
接下来 N 行,每行三个整数 Li,Ri,Ci,描述一个区间。
输出格式
仅一个数,表示该整数序列的最小长度。
输入输出样例
输入 #1复制
4 4 5 1 6 10 3 7 10 3 5 6 1
输出 #1复制
4
说明/提示
数据范围及约定
对于全部数据,1≤N≤1000,0≤Li≤Ri≤1000,1≤Ci≤Ri−Li+1。
#include<bits/stdc++.h>
using namespace std;
struct node{
int l,r,x;
}p[10005];
int vis[10005];
bool cmp(node x,node y)
{
return x.r<y.r;
}
int main()
{
int n;
cin>>n;
int ans=0;
for(int i=1;i<=n;i++)