Go语言精华总结【万字长文】

本文深入探讨Go语言的核心特性,包括select机制的超时处理,通道的内部结构、单向和双向通道,以及无缓冲和有缓冲通道的使用。详细讲解了goroutine的本质和创建,与coroutine的区别,以及并发与并行的概念。同时,介绍了反射的规则和死码消除的优化,提供了一些实用的编程技巧和陷阱警示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

select 机制

select 机制不是专门为超时而设计的,却能很方便的解决超时问题,因为 select 的特点是只要其中有一个 case 已经完成,程序就会继续往下执行,而不会考虑其他 case 的情况。

select 的用法与 switch 语言非常类似,由 select 开始一个新的选择块,每个选择条件由 case 语句来描述。但与 switch 语句相比,select 有比较多的限制,其中最大的一条限制就是每个 case 语句里必须是一个 IO 操作。

select {
    case <-chan1:
    // 如果chan1成功读到数据,则进行该case处理语句
    case chan2 <- 1:
    // 如果成功向chan2写入数据,则进行该case处理语句
    default:
    // 如果上面都没有成功,则进入default处理流程
}

在一个 select 语句中,Go语言会按顺序从头至尾评估每一个发送和接收的语句。

如果其中的任意一语句可以继续执行(即没有被阻塞),那么就从那些可以执行的语句中任意选择一条来使用。

如果没有任意一条语句可以执行(即所有的通道都被阻塞),那么有如下两种可能的情况:

### 自然语言处理综述 #### 发展历程与现状 自然语言处理的发展经历了多个历史阶段的演进,不同学派之间相互补充促进,共同推动了这一技术的快速发展[^1]。作为人工智能领域的重要分支,自然语言处理涉及如何使计算机理解和生成人类自然语言的问题[^2]。 #### 技术方法演变 早期的研究主要依赖于基于规则的方法来描述语言的形式特征;然而这种方法对于复杂问题存在局限性,并且需要大量人工定义规则[^3]。随着研究深入和技术进步,出现了更多先进的技术和算法: - **基于统计的方法**:通过大规模语料库自动学习概率分布来进行预测和决策。 - **预训练语言模型**:近年来兴起的一种强大工具,在众多下游任务上取得了显著成果,如语言建模、机器翻译、问答系统等[^4]。 ```python import transformers as trfms from datasets import load_dataset # 加载预训练模型及其对应的分词器 model_name = "bert-base-cased" tokenizer = trfms.BertTokenizer.from_pretrained(model_name) model = trfms.BertModel.from_pretrained(model_name) def encode_text(text): """ 对输入文本进行编码 """ inputs = tokenizer.encode_plus( text, add_special_tokens=True, max_length=512, padding='max_length', truncation=True, return_attention_mask=True, return_tensors="pt", ) return inputs['input_ids'], inputs['attention_mask'] text_example = "这是一个用于展示BERT使用的例子。" encoded_input, attention_mask = encode_text(text_example) outputs = model(encoded_input, attention_mask=attention_mask)[0] print(outputs.shape) # 输出最后一层隐藏状态张量大小 ``` 此代码片段展示了如何利用Hugging Face提供的`transformers`库加载并使用预训练好的BERT模型对一段中文文本进行编码表示。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FeelTouch Labs

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值