鱼弦:公众号【红尘灯塔】,CSDN博客专家、内容合伙人、新星导师、全栈领域优质创作者 、51CTO(Top红人+专家博主) 、github开源爱好者(go-zero源码二次开发、游戏后端架构 https://github.com/Peakchen)
YOLOv8改进:利用C2fCIB魔改YOLOv8
简介
YOLOv8 是目前最先进的目标检测算法之一,但仍存在一些可以改进的地方。 本文介绍一种利用 YOLOv10 提出 C2fCIB 模块改进 YOLOv8 的方案。
原理详解
C2fCIB 模块
C2fCIB(Channel-to-Feature, Feature-to-Channel, Channel-in-Bottle, Inside-out Bottleneck)模块是一种轻量级的特征增强模块,它融合了点卷积和深度卷积,可以有效提升模型的特征提取能力和表达能力。
改进 YOLOv8
将 C2fCIB 模块应用于 YOLOv8 的主干网络,可以替代原有的 CSPStage 模块,从而提升模型的精度和鲁棒性,同时降低模型的计算量和参数量。
应用场景
该改进方案适用于各种目标检测任务,例如:
- 通用目标检测: 检测和识别图像中的各种物体,例如行人、车辆、动物等。
- 低光照目标检测: 在低光照条件下提升目标检测的精度和鲁棒性。
- 小型目标检测: 提高