鱼弦:公众号【红尘灯塔】,CSDN博客专家、内容合伙人、新星导师、全栈领域优质创作者 、51CTO(Top红人+专家博主) 、github开源爱好者(go-zero源码二次开发、游戏后端架构 https://github.com/Peakchen)
YOLOv8改进 | Neck篇 | 利用Damo-YOLO的RepGFPN改进特征融合层(全新YOLOv8改进策略)
1. 简介
将Damo-YOLO的RepGFPN引入YOLOv8的Neck层可以显著提高模型的性能,尤其是在目标检测的多尺度目标检测性能和语义特征提取能力方面。RepGFPN是一种基于全局感受野(GF)和路径聚合(PA)的改进型特征融合网络,它能够有效地融合不同尺度特征之间的信息,并增强模型对语义信息的提取能力。
2. 原理详解
RepGFPN主要包含以下几个部分:
- GF模块: 首先使用GF模块提取全局感受野特征,以获取更丰富的上下文信息。
- PA模块: 然后使用PA模块进行路径聚合,将不同尺度特征进行融合。
- 特征级联: 最后将融合后的特征与原始特征进行级联,得到最终的特征表示。
3. 应用场景解释
RepGFPN改进特征融合层适用于以下场景:
- 目标检测: 提高目标检测模型的多尺度目标检测性能,尤其是对多尺度目标的检测精度和鲁棒性。