基于混合反步神经网络的受限可重构机械臂力/位置控制
1. 引言
可重构机械臂由可互换模块组成,与具有固定机械结构的传统机器人不同。它具有便携性、易于维护、工作空间大、成本低和可定制等重要特性。由于其标准关节、连接模块以及在太空探索、高风险作业、智能制造、战场等领域的潜在应用,可重构机械臂的控制引起了控制界的广泛关注。
目前,大多数关于可重构机械臂的研究是在不受环境约束的机器人系统上进行的,但在实际应用中,机械臂会与环境发生各种交互。现有的控制方式多基于集中控制,但鲁棒性会带来复杂性。而分散控制结构不仅为各种配置提供了所需的灵活性,还具有较短的计算时间,非常适合可重构机械臂的实时应用。
传统的控制方法严重依赖基于模型的鲁棒自适应控制算法,试图精确理解不确定系统。但实际中,这些方法面临的最大困难是如何计算回归矩阵并为不确定系统的动态模型收集精确数据。当动力学复杂时,使用传统的依赖模型的控制技术来控制系统变得更加困难。此外,需要确定外部干扰和不确定性的限制。而智能方法已被证明是一种更有效的方法,可用于逼近未知的光滑非线性函数,克服依赖模型的控制器的局限性。
神经网络控制技术具有非线性映射、并行分布式结构和自学习能力等可调节特性,可用于管理更复杂的系统。将鲁棒自适应、滑模控制、集中和分散控制方案与神经网络技术相结合,也产生了许多出色的控制方案。
本研究旨在提出一种高精度的基于神经网络的混合力/位置控制器,用于解决受限可重构机械臂的力和位置控制问题。主要贡献如下:
- 通过将无模型方法与部分系统动力学信息相结合,提出了一种新的受限可重构机械臂控制方案,使用径向基函数神经网络估计系统的未知动态分量。
- 在控制器部分添加自适应补偿器