【书生实战营】L1G4000 - Llamaindex RAG实践

准备

下载 Sentence Transformer 模型

cd ~
mkdir llamaindex_demo
mkdir model
cd ~/llamaindex_demo
touch download_hf.py
# download_hf.py
import os

# 设置环境变量
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'

# 下载模型
os.system('huggingface-cli download --resume-download sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 --local-dir /root/model/sentence-transformer')
python download_hf.py

下载 NLTK 相关资源

cd /root
git clone https://gitee.com/yzy0612/nltk_data.git  --branch gh-pages
cd nltk_data
mv packages/*  ./
cd tokenizers
unzip punkt.zip
cd ../taggers
unzip averaged_perceptron_tagger.zip

基于 LlamaIndex 构建自己的 RAG 知识库 - 使用浦语API

环境部署

conda create -n llamaindex python=3.10
conda activate llamaindex
pip install einops==0.7.0 protobuf==5.26.1
pip install llama-index==0.11.20
pip install llama-index-llms-replicate==0.3.0
pip install llama-index-llms-openai-like==0.2.0
pip install llama-index-embeddings-huggingface==0.3.1
pip install llama-index-embeddings-instructor==0.2.1
pip install torch==2.5.0 torchvision==0.20.0 torchaudio==2.5.0 --index-url https://download.pytorch.org/whl/cu121

使用RAG前

#cd ~/llamaindex_demo
#touch test_internlm.py
from openai import OpenAI

base_url = "https://internlm-chat.intern-ai.org.cn/puyu/api/v1/"
api_key = "sk-请填写准确的 token!"
model="internlm2.5-latest"

# base_url = "https://api.siliconflow.cn/v1"
# api_key = "sk-请填写准确的 token!"
# model="internlm/internlm2_5-7b-chat"

client = OpenAI(
    api_key=api_key , 
    base_url=base_url,
)

chat_rsp = client.chat.completions.create(
    model=model,
    messages=[{"role": "user", "content": "xtuner是什么?"}],
)

for choice in chat_rsp.choices:
    print(choice.message.content)

在这里插入图片描述

使用RAG

import os 
os.environ['NLTK_DATA'] = '/root/nltk_data'

from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.core.settings import Settings
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.legacy.callbacks import CallbackManager
from llama_index.llms.openai_like import OpenAILike


# Create an instance of CallbackManager
callback_manager = CallbackManager()

api_base_url =  "https://internlm-chat.intern-ai.org.cn/puyu/api/v1/"
model = "internlm2.5-latest"
api_key = "请填写 API Key"

# api_base_url =  "https://api.siliconflow.cn/v1"
# model = "internlm/internlm2_5-7b-chat"
# api_key = "请填写 API Key"



llm =OpenAILike(model=model, api_base=api_base_url, api_key=api_key, is_chat_model=True,callback_manager=callback_manager)


#初始化一个HuggingFaceEmbedding对象,用于将文本转换为向量表示
embed_model = HuggingFaceEmbedding(
#指定了一个预训练的sentence-transformer模型的路径
    model_name="/root/model/sentence-transformer"
)
#将创建的嵌入模型赋值给全局设置的embed_model属性,
#这样在后续的索引构建过程中就会使用这个模型。
Settings.embed_model = embed_model

#初始化llm
Settings.llm = llm

#从指定目录读取所有文档,并加载数据到内存中
documents = SimpleDirectoryReader("/root/llamaindex_demo/data").load_data()
#创建一个VectorStoreIndex,并使用之前加载的文档来构建索引。
# 此索引将文档转换为向量,并存储这些向量以便于快速检索。
index = VectorStoreIndex.from_documents(documents)
# 创建一个查询引擎,这个引擎可以接收查询并返回相关文档的响应。
query_engine = index.as_query_engine()
response = query_engine.query("xtuner是什么?")

print(response)

在这里插入图片描述

基于 LlamaIndex 构建自己的 RAG 知识库 - 使用本地模型

环境部署

conda create -n llamaindex python=3.10
conda activate llamaindex
# python 相关基础依赖包
pip install einops==0.7.0 protobuf==5.26.1
# 安装 Llamaindex 和相关的包:
pip install llama-index==0.10.38 llama-index-llms-huggingface==0.2.0 "transformers[torch]==4.41.1" "huggingface_hub[inference]==0.23.1" huggingface_hub==0.23.1 sentence-transformers==2.7.0 sentencepiece==0.2.0

# 安装 LlamaIndex 词嵌入向量依赖:
pip install llama-index-embeddings-huggingface==0.2.0 llama-index-embeddings-instructor==0.1.3

# 安装pytorch
conda install pytorch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 pytorch-cuda=11.7 -c pytorch -c nvidia

下载 Sentence Transformer 模型

cd ~
mkdir llamaindex_demo
mkdir model
cd ~/llamaindex_demo
touch download_hf.py
# download_hf.py
import os

# 设置环境变量
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'

# 下载模型
os.system('huggingface-cli download --resume-download sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 --local-dir /root/model/sentence-transformer')
python download_hf.py

下载 NLTK 相关资源

cd /root
git clone https://gitee.com/yzy0612/nltk_data.git  --branch gh-pages
cd nltk_data
mv packages/*  ./
cd tokenizers
unzip punkt.zip
cd ../taggers
unzip averaged_perceptron_tagger.zip

LlamaIndex HuggingFaceLLM

InternLM2 1.8B 软连接出来

cd ~/model
ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b/ ./
cd ~/llamaindex_demo
touch llamaindex_internlm.py
from llama_index.llms.huggingface import HuggingFaceLLM
from llama_index.core.llms import ChatMessage
llm = HuggingFaceLLM(
    model_name="/root/model/internlm2-chat-1_8b",
    tokenizer_name="/root/model/internlm2-chat-1_8b",
    model_kwargs={"trust_remote_code":True},
    tokenizer_kwargs={"trust_remote_code":True}
)

rsp = llm.chat(messages=[ChatMessage(content="xtuner是什么?")])
print(rsp)
conda activate llamaindex
cd ~/llamaindex_demo/
python llamaindex_internlm.py

回复结果,效果并不好:

在这里插入图片描述

使用RAG

获取知识库

cd ~/llamaindex_demo
mkdir data
cd data
git clone https://github.com/InternLM/xtuner.git
mv xtuner/README_zh-CN.md ./
#cd ~/llamaindex_demo
#touch llamaindex_RAG.py

from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings

from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.llms.huggingface import HuggingFaceLLM

#初始化一个HuggingFaceEmbedding对象,用于将文本转换为向量表示
embed_model = HuggingFaceEmbedding(
#指定了一个预训练的sentence-transformer模型的路径
    model_name="/root/model/sentence-transformer"
)
#将创建的嵌入模型赋值给全局设置的embed_model属性,
#这样在后续的索引构建过程中就会使用这个模型。
Settings.embed_model = embed_model

llm = HuggingFaceLLM(
    model_name="/root/model/internlm2-chat-1_8b",
    tokenizer_name="/root/model/internlm2-chat-1_8b",
    model_kwargs={"trust_remote_code":True},
    tokenizer_kwargs={"trust_remote_code":True}
)
#设置全局的llm属性,这样在索引查询时会使用这个模型。
Settings.llm = llm

#从指定目录读取所有文档,并加载数据到内存中
documents = SimpleDirectoryReader("/root/llamaindex_demo/data").load_data()
#创建一个VectorStoreIndex,并使用之前加载的文档来构建索引。
# 此索引将文档转换为向量,并存储这些向量以便于快速检索。
index = VectorStoreIndex.from_documents(documents)
# 创建一个查询引擎,这个引擎可以接收查询并返回相关文档的响应。
query_engine = index.as_query_engine()
response = query_engine.query("xtuner是什么?")

print(response)

在这里插入图片描述

借助RAG得到更好的回答。

LlamaIndex WEB

pip install streamlit==1.36.0
#cd ~/llamaindex_demo
#touch app.py
import streamlit as st
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.legacy.callbacks import CallbackManager
from llama_index.llms.openai_like import OpenAILike

# Create an instance of CallbackManager
callback_manager = CallbackManager()

api_base_url =  "https://internlm-chat.intern-ai.org.cn/puyu/api/v1/"
model = "internlm2.5-latest"
api_key = "eyJ0eXBlIjoiSldUIiwiYWxnIjoiSFM1MTIifQ.eyJqdGkiOiI1MDE5MjIxMSIsInJvbCI6IlJPTEVfUkVHSVNURVIiLCJpc3MiOiJPcGVuWExhYiIsImlhdCI6MTczMTQ3NDgxMiwiY2xpZW50SWQiOiJlYm1ydm9kNnlvMG5semFlazF5cCIsInBob25lIjoiMTkxMjE3NTE2NDAiLCJ1dWlkIjoiN2UyMDNmMjUtMGVjZS00YTVjLTgyYWYtYWQ2MTRiMzEwMDM2IiwiZW1haWwiOiIiLCJleHAiOjE3NDcwMjY4MTJ9.GLkZABg2ua1gUOq8xziYrhHLD-Z5J3yxVXxsj2ErgLVLMq4aA6mYhFndw_WGDFpneO1g1Pfv0fNYT26N2uCoYw"

# api_base_url =  "https://api.siliconflow.cn/v1"
# model = "internlm/internlm2_5-7b-chat"
# api_key = "请填写 API Key"

llm =OpenAILike(model=model, api_base=api_base_url, api_key=api_key, is_chat_model=True,callback_manager=callback_manager)



st.set_page_config(page_title="llama_index_demo", page_icon="🦜🔗")
st.title("llama_index_demo")

# 初始化模型
@st.cache_resource
def init_models():
    embed_model = HuggingFaceEmbedding(
        model_name="/root/model/sentence-transformer/"
    )
    Settings.embed_model = embed_model

    #用初始化llm
    Settings.llm = llm

    documents = SimpleDirectoryReader("/root/llamaindex_demo/data").load_data()
    index = VectorStoreIndex.from_documents(documents)
    query_engine = index.as_query_engine()

    return query_engine

# 检查是否需要初始化模型
if 'query_engine' not in st.session_state:
    st.session_state['query_engine'] = init_models()

def greet2(question):
    response = st.session_state['query_engine'].query(question)
    return response

      
# Store LLM generated responses
if "messages" not in st.session_state.keys():
    st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}]    

    # Display or clear chat messages
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.write(message["content"])

def clear_chat_history():
    st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}]

st.sidebar.button('Clear Chat History', on_click=clear_chat_history)

# Function for generating LLaMA2 response
def generate_llama_index_response(prompt_input):
    return greet2(prompt_input)

# User-provided prompt
if prompt := st.chat_input():
    st.session_state.messages.append({"role": "user", "content": prompt})
    with st.chat_message("user"):
        st.write(prompt)

# Gegenerate_llama_index_response last message is not from assistant
if st.session_state.messages[-1]["role"] != "assistant":
    with st.chat_message("assistant"):
        with st.spinner("Thinking..."):
            response = generate_llama_index_response(prompt)
            placeholder = st.empty()
            placeholder.markdown(response)
    message = {"role": "assistant", "content": response}
    st.session_state.messages.append(message)

运行

streamlit run app.py

在这里插入图片描述

在这里插入图片描述
部署:暂无

LLamaIndex RAG (Retrieval-Augmented Generation) 是一种结合了检索增强生成技术的语言模型应用框架。它通过将传统的语言模型与信息检索系统相结合,使得在生成文本时能够利用外部知识库的信息。 以下是关于 LLamaIndex RAG 的详细介绍: ### 检索增强生成的基本原理 RAG的核心思想是在生成过程中引入额外的知识来源,而不是仅仅依赖于预训练数据集本身。这有助于提高生成内容的相关性和准确性,特别是在需要特定领域专业知识的任务上更为有效。 #### 工作流程概述 1. **查询理解**:首先对用户输入的问题或其他形式的提示进行编码处理; 2. **文档检索**:从预先构建好的数据库、网页等资源中找到最相关的几段文字作为背景材料; 3. **融合表示**:将上述获取到的内容同原始提问一起送入下游任务专用模块内做进一步加工转化; 4. **结果输出**:最终得到的答案既包含了来自大范围上下文环境下的自然流畅表达又具备着精确指向性的细节补充说明。 ### 应用场景示例 - 客服机器人可以借助企业内部FAQ文档提供更准确的服务解答。 - 医疗咨询助手依据权威医学文献给出专业建议。 - 教育平台根据教材知识点定制化出题组卷等功能都可以受益于这项技术创新带来的便利之处。 总之,通过集成搜索引擎的能力让机器学习模型更好地服务于实际需求成为了当前研究热点之一,并且随着技术进步未来还会有更多可能性等待探索发现!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不知不道abc

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值