【书生实战营】L1G5000 - XTuner 微调实践


XTuner 文档链接: XTuner-doc-cn

课程视频:https://www.bilibili.com/video/BV1G9SJYGEtD

使用 XTuner 微调 InternLM2-Chat-7B 实现自己的小助手认知

环境配置与数据准备

机器配置 30% A100

cd ~
git clone https://github.com/InternLM/Tutorial.git -b camp4
mkdir -p /root/finetune && cd /root/finetune
conda activate /root/share/pre_envs/pytorch2.3.1cu12.1

安装 XTuner。推荐源码安装

pip install -t /root/finetune/env 'xtuner[deepspeed]' timm==1.0.9 transformers==4.39.0

每次使用前,需要运行一下命令,把自定义的安装包的路径添加到PYTHONPATH环境变量中,这样python才能找到你安装的包(同一个终端下只需运行一次):

export PYTHONPATH=/root/finetune/env:$PYTHONPATH
export PATH=/root/finetune/env/bin:$PATH

验证安装 - 打印配置文件:

xtuner list-cfg

修改准备的数据

创建一个新的文件夹用于存储微调数据

mkdir -p /root/finetune/data && cd /root/finetune/data
cp -r /root/Tutorial/data/assistant_Tuner.jsonl  /root/finetune/data

创建修改脚本

# 创建 `change_script.py` 文件
touch /root/finetune/data/change_script.py
import json
import argparse
from tqdm import tqdm

def process_line(line, old_text, new_text):
    # 解析 JSON 行
    data = json.loads(line)
    
    # 递归函数来处理嵌套的字典和列表
    def replace_text(obj):
        if isinstance(obj, dict):
            return {
   
   k: replace_text(v) for k, v in obj.items()}
        elif isinstance(obj, list
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不知不道abc

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值