使用RD Client来远程桌面(cell-coder)

本文介绍了如何使用RD Client进行远程桌面连接,对比了与其他远程桌面软件的优缺点,并详细阐述了配置RD Client的过程,包括服务器端和Windows客户端的设置,以及在Windows、Android、iOS设备上的连接步骤。通过RD Client,可以实现高质量、低带宽占用的远程办公体验。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用RD Client来远程桌面

可能你会觉得奇怪,team viewer和向日葵之类的难道不香吗?看起来他们两个都是实现了远程桌面的功能,好像没必要特地用Windows自带的RD Client进行内网穿透之后远程桌面。

实际上team viewer之类的在我的使用范围内不是特别好用,先列举出几条我觉得不好的地方:

  1. 速度慢,画面卡,经常会卡顿。这里是免费版的体验,付费的没试过毕竟还是有点贵
  2. 远程桌面的原理是通过大量截图再发送到服务器再传到远程端,带宽占用极大
  3. 如果使用安卓平板或者iPad进行远程连接,那蓝牙键盘的很多按键都没法正常使用,也就说如果使用iPad或者安卓之类的远程桌面就要忍受几乎不能使用常用快捷键

这是我使用的范围内team viewer之类不好用的地方。RD Client强的地方就在于:

  1. 微软有自己的远程桌面协议,可以在保证清晰度的同时还能不占用很大的带宽。我的frp服务器才5M的带宽,看视屏都不会很卡。并且支持局域网,在局域网内可以直接连接,速度比过frp更快了。
  2. 如果使用RD Client,用平板连上之后,板子就变成了一个Windows触屏版!!就像一个surface一样!屏幕转动后自适应分辨率之类的功能是team viewer之类的无法提供的!
  3. 对键盘的适配,除了win键,几乎所有的按键都能直接在平板上使用!

当然,RD Client并不能直接对标team viewer之类的产品,因为定位是不一样的啊。我只能从个人用户的角度去描述一些缺点,毕竟team viewer提供的是企业级的远程控制服务,能做的事和RD Client不能重叠起来比较的。

所以结论是:

  1. 如果你希望只带一个iPad或者安卓平板或者是一个手机就想远程到自己的电脑进行高强度办公,RD Client是比team viewer更好用的方案
  2. 如果你追求不卡的画面和更高的分辨率,RD Client是一个更好的选择。
  3. 如果你的电脑希望不止提供给一个人使用,而是希望能让多用户同时使用你的电脑,RD Client是个更适合你的方案。
  4. 个人认为如果有性能较好的个人台式机,使用这种方式能最大化自己的远程体验,用Windows笔记本远程到自己台式机简直美滋滋,原汁原味的操作,没有像team viewer之类的繁杂的弹窗,大赞。

1. 配置前的一些准备

接下来我只会讲frp内网穿透来实现远程桌面,如果你有自己的公网IP,那恭喜你不需要搞内网穿透,可以很方便的连接上,Google就知道怎么连了。留下了没有公网IP的泪水

frp需要一个有公网IP的云服务器,也就是需要购置一个VPS。本人是用阿里云的学生机实现的,10块钱一个月5M带宽很划算。aliyun云翼计划传送门。带宽越大越好,所以选轻量服务器,1M的带宽是测过,只能打打字那样子,一到画面多变的时候就会很卡哦~所以不选ESC学生机。

aliyun学生身份认证很简单,24岁以下就算学生了。或者找学生朋友帮忙开一个,或者用ESC买按量付费的服务

域名就看着办吧,有的话最好,没有也没差。

2. 配置frp服务器

frp内网渗透分两个端,一个是服务器端,一个是客户端。也就是说,如果想要完成渗透,需要在服务器配置好后,在自己需要远程控制的电脑配置好frp的服务器,才能正常的完成整个流程。

frp的GitHub入口

2.1 服务器端frp的配置

首先,vps的环境默认为Ubuntu18。其他的发行版命令大同小异,就各自转化一下。

### 下载和使用 DeepSeek-Coder-V2 #### 获取项目代码 为了获取 `DeepSeek-Coder-V2` 项目的最新版本,可以按照如下方式操作: 通过 Git 命令行工具克隆仓库至本地环境: ```bash git clone https://github.com/deepseek-ai/DeepSeek-Coder-V2.git cd DeepSeek-Coder-V2 ``` 这会创建一个名为 `DeepSeek-Coder-V2` 的目录,并从中检出最新的源码[^1]。 #### 配置开发环境 进入项目根目录后,需设置合适的虚拟环境以及安装依赖项。通常情况下,建议采用 Python 虚拟环境管理器如 `venv` 或者 `conda` 来隔离不同项目的包依赖关系。具体命令取决于所选的方法: 对于 venv 用户来说, ```bash python -m venv env source env/bin/activate # Linux/macOS .\env\Scripts\activate # Windows PowerShell pip install --upgrade pip setuptools wheel pip install -r requirements.txt ``` 而对于 conda 用户,则执行下面这些指令: ```bash conda create --name deepseek python=3.x conda activate deepseek pip install --upgrade pip setuptools wheel pip install -r requirements.txt ``` 这里假设 `requirements.txt` 文件包含了运行该项目所需的所有库及其版本号信息。 #### 使用预训练模型 关于 `deepseek-coder-v2-236B` 这一特定变体,其主要特点是仅利用 Next-Token Prediction 方法来进行训练过程[^3]。这意味着该模型专注于预测序列中的下一个标记,在自然语言处理任务中表现出色。要加载此模型用于推理或其他用途,可参照官方文档或示例脚本内的说明进行调用。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值