模型评估指标

分类:混淆矩阵/列联表

  • 二分类:准确率,召回率,AUC(ROC曲线下的面积),logloss(对预测概率的似然估计),accuracy(概率阈值影响该指标),precision(概率阈值影响该指标)
    • T P TP TP:正预测为正(预测正确)
    • T N TN TN:负预测为负(预测正确)
    • F P FP FP:负预测为正
    • F N FN FN:正预测为负
    • 预测结果为正的准确率/精度: 准确率/PPV = T P T P + F P \text{准确率/PPV} = \frac{TP}{TP + FP} 准确率/PPV=TP+FPTP
    • 正样本预测的准确率/查全率: 召回率/TPR = T P T P + F N \text{召回率/TPR} = \frac{TP}{TP + FN} 召回率/TPR=TP+FNTP
    • 负样本预测的准确率: 特异度 = T N T N + F P \text{特异度} = \frac{TN}{TN + FP} 特异度=TN+FPTN
    • 预测结果为负的准确率: 敏感度 = T N T N + F N \text{敏感度} = \frac{TN}{TN + FN} 敏感度=TN+FNTN
    • 预测准确率: T P + F N T P + T N + F P + F N \frac{TP + FN}{TP + TN + FP + FN} TP+TN+FP+FNTP+FN
  • F值(准确率和召回率的调和均值)
    • F 1 = 2 × 准确率 × 召回率 准确率 + 召回率 F_1 = \frac{2 \times \text{准确率} \times \text{召回率}}{\text{准确率} + \text{召回率}} F1=准确率+召回率2×准确率×召回率
    • F β = ( 1 + β 2 ) × 准确率 × 召回率 β 2 × 准确率 + 召回率 F_{\beta} = \frac{(1 + \beta^2) \times \text{准确率} \times \text{召回率}}{\beta^2 \times \text{准确率} + \text{召回率}} Fβ=β2×准确率+召回率(1+β2)×准确率×召回率
  • ROC曲线:FPR(假正率)为x轴,TPR(真正率)为y轴(曲线光滑,基本可以判断没有太大的over fitting)
  • PR曲线:召回率R为x轴,准确率P为y轴
  • AUC
  • 其它指标
    • 交叉熵: H ( p , q ) H(p, q)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值