似然比检验 LRT

似然比检验(likelihood ratio test, LRT)是一种检验参数能否反映真实约束的方法(分布或模型的某参数 \theta 等于 \theta_0 是否为真实约束)。似然比检验的思想是:“如果参数约束是有效的,那么加上这样的约束不应该引起似然函数最大值的大幅度降低。也就是说似然比检验的实质是在比较有约束条件下的似然函数最大值与无约束条件下似然函数最大值。” 可以看出,似然比检验是一种通用的检验方法(比 t 检验、\chi ^2 检验等具有更广的适用范围)。

以下摘自《应用多元统计分析》:

考虑多元正态分布N_q(\theta ,I),为了检验 \theta 是否等于 \theta_0,我们建立检验问题:

      H_0:\theta =\theta _0

      H_1: 对\theta没有约束

或者等价地,\Omega _0=\left \{ \theta _0 \right \}, \Omega _1=R^q

定义 L_j^*=maxL(X;\theta ) 为每个假设似然函数的最大值。考虑似然比(LR):

      \lambda (X)=\frac{L_0^*}{L_1^*}      或者写成对数形式  -2log\lambda =2(l_1^*-l_2^*)   

[ 注:通常写成乘以2形式是为了之后推导中近似变换为卡方值,即-2log\lambda 的渐进分布是 \chi _{q-r}^2 ,其中 \Omega _0\in \Omega _1 是 r 维 ]

如果LR值比较高,则倾向于接受 H_0 ,否则倾向于接受 H_1 。

关于似然函数,可以参考:

似然与极大似然估计

似然函数及最大似然估计及似然比检验

 

似然比检验LRT的应用广泛,包括:均值(包括均值向量的比较重复度量轮廓分析(趋势比较)、模型适合度等等。

均值向量的比较:以二维向量为例,比如同时检验A、B两组人群的身高 x_1 和 体重 x_2 是否来自同一总体,可将身高和体重的均值组合成向量,即A组的均值向量为 \vec{\mu}_A=(x_{1A},x_{2A}),B组的均值向量为 \vec{\mu}_B=(x_{1B},x_{2B}),对这两组均值向量进行检验(此处LRT其实等价于Hotelling's T2检验)。均值向量的问题,其实本质上是线性假设(线性约束)问题,并且也可以用作回归系数的假设检验。

重复度量:同一个指标在同一个主体上进行多次测量,检验多次测量值之间是否有差异(比如是否存在时间效应及治疗效应)。

轮廓分析:以两组的轮廓为例,当重复测量发生在两组主体中时,想考量两组的重复测量趋势是否一致。对于这个问题,可以从这3方面考虑(这3方面需依次考虑):

  1. 基于平行的定义,这些轮廓相似吗(轮廓是否平行,注意这里不相交便意味着平行)?
  2. 如果轮廓是平行的,二者处于同一水平吗(两组轮廓是否为同一轮廓)?
  3. 如果轮廓是平行的,但二者不处于同一水平,轮廓存在治疗效应吗(无论接受何种治疗,轮廓是否始终保持相同,趋势是否一致)?

这些问题可以转换为均值的线性约束问题进行求解。

这些内容的具体介绍请参考《应用多元统计分析》。

下面仅介绍使用似然比检验评估模型的适合度。

 

评估模型的适合度

似然比检验用来评估两个模型中那个模型更适合当前数据分析。具体来说,一个相对复杂的模型与一个简单模型比较,来检验它是不是能够显著地适合一个特定的数据集。如果可以,那么这个复杂模型的附加参数能够用在以后的数据分析中。LRT应用的一个前提条件是这些待比较的模型应该是分级的巢式模型。具体来讲,是说相对于简单模型,复杂模型仅仅是多了一个或者多个附加参数。增加模型参数必定会导致高似然值成绩。因此根据似然值的高低来判断模型的适合度是不准确的。LRT提供了一个客观的标准来选择合适的模型。LRT检验的公式: LR = 2*(InL1- InL2)

其中L1为复杂模型最大似然值,L2为简单标准模型最大似然值LR近似的符合卡方分布。为了检验两个模型似然值的差异是否显著,我们必须要考虑自由度。LRT 检验中,自由度等于在复杂模型中增加的模型参数的数目。这样根据卡方分布临界值表,我们就可以判断模型差异是否显著。

以下摘自维基百科:

In statistics, a likelihood ratio test (LR test) is a statistical test used for comparing the goodness of fit of two statistical models — a null model against an alternative model. The test is based on the likelihood ratio, which expresses how many times more likely the data are under one model than the other. This likelihood ratio, or equivalently its logarithm, can then be used to compute a p-value, or compared to a critical value to decide whether or not to reject the null model.

When the logarithm of the likelihood ratio is used, the statistic is known as a log-likelihood ratio statistic, and the probability distribution of this test statistic, assuming that the null model is true, can be approximated using Wilks' theorem.

In the case of distinguishing between two models, each of which has no unknown parameters, use of the likelihood ratio test can be justified by the Neyman–Pearson lemma, which demonstrates that such a test has the highest power among all competitors.

Being a function of the data x, the likelihood ratio is therefore a statistic. The likelihood ratio test rejects the null hypothesis if the value of this statistic is too small. How small is too small depends on the significance level of the test, i.e., on what probability of Type I error is considered tolerable ("Type I" errors consist of the rejection of a null hypothesis that is true).

The numerator corresponds to the likelihood of an observed outcome under the null hypothesis. The denominator corresponds to the maximum likelihood of an observed outcome varying parameters over the whole parameter space. The numerator of this ratio is less than the denominator. The likelihood ratio hence is between 0 and 1. Low values of the likelihood ratio mean that the observed result was less likely to occur under the null hypothesis as compared to the alternative. High values of the statistic mean that the observed outcome was nearly as likely to occur under the null hypothesis as the alternative, and the null hypothesis cannot be rejected.

The likelihood-ratio test requires nested models – models in which the more complex one can be transformed into the simpler model by imposing a set of constraints on the parameters. If the models are not nested, then a generalization of the likelihood-ratio test can usually be used instead: the relative likelihood.

也就是说,比较的两个模型之间存在“嵌合关系”,其中一个模型的变量无约束,另一个模型的变量是前者经过约束后得到的。如果两个模型之间不是嵌套关系,那么就不能使用LRT,而要使用广义的LRT,即相对LR。

在R里面有很多包都有这个函数,最常使用的是rms包中的lrtest()。如:

library(rms)
all.X <-data.frame(x.T=data.T, x.N=data.N, x.S=data.S, x.G=data.G, x.V=data.V, x.P=data.P, x.CEA2=data.CEA2, x.CA1992=data.CA1992)
TN.model <- cph(Surv(survival.time,survival.status)~ x.T+x.N, 
                data=all.X, na.action=na.omit )
TNC.model <- cph(Surv(survival.time,survival.status)~ x.T+x.N+x.CEA2, 
                 data=all.X, na.action=na.omit )
TN2TNC <- lrtest(TN.model, TNC.model)

 

除了似然比检验,还有Wald检验、拉格朗日乘数检验都是基于最大似然估计MLE。当样本量较大时,三者是渐进等价的。

尼曼-皮尔森引理说明,似然比检验是所有具有同等显著性差异的检验中最有统计效力的检验。

另外这个博客可以参考以下:似然函数及最大似然估计及似然比检验

 

参考资料:

《应用多元统计分析》 Wolfgang Hardle等著,陈诗一译. 北京大学出版社

似然函数及最大似然估计及似然比检验

似然与极大似然估计

维基百科 - likelihood ratio test

# 读取数据 df <- read.csv(file.choose()) # 分类变量和数值变量定义 categorical_vars <- c("年龄", "病程", "性别", "慢性合并症", "民族", "肿瘤部位", "经济状况", "职业性质", "是否手术", "有无肠造口", "有无转移", "工作状况", "婚姻状况", "有无放疗", "主要照顾者", "文化程度", "肿瘤分期", "化疗周期", "是否靶向", "治疗方案", "是否免疫治疗", "自我管理效能感水平") numeric_vars <- c("领悟社会支持", "体力活动水平") # 转换变量类型 df <- df %>% mutate(across(all_of(categorical_vars), as.factor), C = as.factor(C)) # 多重插补处理缺失值 imputed_data <- mice(df, m = 5, maxit = 50, method = "pmm", seed = 123) df <- complete(imputed_data) # 步骤1:单变量筛选(使用似然比检验) univ_results <- data.frame() for (var in c(categorical_vars, numeric_vars)) { # 跳过与因变量完全分离的变量 if (length(unique(df[[var]])) == 1) next # 构建公式 formula <- as.formula(paste("C ~", var)) # 拟合模型 tryCatch({ full_model <- glm(formula, data = df, family = binomial) null_model <- glm(C ~ 1, data = df, family = binomial) # 似然比检验 lrt <- anova(null_model, full_model, test = "LRT") p_value <- lrt$`Pr(>Chi)`[2] # 记录结果 univ_results <- rbind(univ_results, data.frame( Variable = var, P_value = p_value )) }, error = function(e) { message("Error in variable: ", var, " - ", conditionMessage(e)) }) } # 筛选P值<0.05的变量(可根据需要调整阈值) selected_vars <- univ_results$Variable[univ_results$P_value < 0.05 & !is.na(univ_results$P_value)] options(scipen = 999) # 取消科学计数法 options(digits = 3) # 设置保留三位小数 # 筛选P值小于0.05的变量 significant_vars <- univ_results[univ_results$P_value < 0.05 & !is.na(univ_results$P_value), ] print(significant_vars)上述是我的代码,这五种机器学习预测模型,请给我代码和相关指标等
03-21
<think>好的,我需要帮助用户基于他们提供的数据预处理代码,构建并比较五种常见的机器学习分类模型,同时计算性能指标。首先,我需要确认用户提到的五种模型:逻辑回归、决策树、随机森林、SVM和支持向量机。不过这里可能有个笔误,因为SVM本身就是支持向量机,所以可能用户是指其他模型,比如可能想包括K近邻或者朴素贝叶斯?但根据用户明确的列表,应该是逻辑回归、决策树、随机森林、SVM(支持向量机),可能还有一个重复或者需要确认。不过按照常规分类模型,可能用户确实指的是这五个,其中SVM和支持向量机是同一个,所以可能需要确认,但暂时按用户给出的列表处理。 接下来,用户希望基于给定的数据预处理代码来构建这些模型。但用户并没有提供数据预处理的具体代码,所以可能需要假设用户已经完成了数据预处理,例如特征缩放、处理缺失值、划分训练集和测试集等步骤。因此,在代码示例中需要包含数据预处理的通用步骤,比如使用StandardScaler进行标准化,以及train_test_split划分数据集。 然后,用户需要每种模型的代码实现以及性能评估指标,如准确率、召回率、F1分数等。这些指标可以通过sklearn的metrics模块来计算,比如accuracy_score, precision_score, recall_score, f1_score, confusion_matrix等。此外,可能需要生成分类报告classification_report。 接下来,我需要考虑如何组织代码。通常,先导入必要的库,然后加载数据,进行预处理,划分数据集,然后依次构建每个模型,训练并预测,最后评估。用户可能希望每个模型都有单独的代码块,并且有相应的评估指标输出。 需要注意的是,不同的模型可能需要不同的预处理步骤。例如,SVM对特征的缩放比较敏感,通常需要进行标准化;而决策树和随机森林基于树的模型则对特征缩放不敏感,所以可能不需要。但为了统一处理,可能在预处理时对所有模型应用相同的标准化步骤,或者根据模型类型进行调整。不过用户可能希望基于给定的预处理代码,所以假设用户的数据已经处理好了,或者按照通用的预处理流程来处理。 另外,用户提到的性能指标包括准确率、召回率、F1分数,这些都是分类任务中常用的指标。每个模型训练后,都需要在测试集上进行预测,并计算这些指标。 现在,开始编写代码框架: 1. 导入必要的库: - pandas/numpy用于数据处理 - train_test_split划分数据集 - StandardScaler进行标准化 - 各个模型的类(LogisticRegression, DecisionTreeClassifier, RandomForestClassifier, SVC) - metrics中的评估函数 2. 数据预处理部分: - 加载数据 - 分离特征和目标变量 - 划分训练集和测试集 - 标准化特征(适用于需要标准化的模型,如逻辑回归和SVM) 3. 对于每个模型: - 实例化模型 - 训练模型(fit) - 预测测试集结果(predict) - 计算评估指标 4. 输出结果,并比较各个模型的性能。 此外,需要注意不同模型的超参数设置,比如SVM的kernel类型,随机森林的n_estimators等,可能需要用户根据实际情况调整,或者进行网格搜索优化,但用户的问题可能暂时不需要超参数调优,只是基础模型的构建和评估。 现在,关于用户提供的引用内容,引用[1]提到逻辑回归和SVM的训练,引用[2]和[4]涉及随机森林和Bagging方法,引用[3]提到集成方法。这些引用可能在模型解释部分有用,比如随机森林通过投票法决策,可以引用[2]和[4]。 在编写代码时,需要确保正确使用这些模型,并正确计算指标。例如,随机森林属于集成方法,基于决策树的bagging,可以引用[4]中的描述。 现在,检查是否有遗漏的模型,用户提到的五种模型:逻辑回归、决策树、随机森林、SVM和支持向量机。这里显然重复了SVM和支持向量机,可能是笔误,所以正确的五个模型应该是:逻辑回归、决策树、随机森林、SVM、以及另外一个如KNN或朴素贝叶斯。但根据用户的问题描述,可能是指逻辑回归、决策树、随机森林、SVM、以及可能有一个其他模型,但用户明确列出了“支持向量机”,这可能是一个重复,所以可能需要确认。但根据常规分类模型,可能用户确实是指这五个,其中SVM和支持向量机是同一个,因此可能用户有误,但按照问题中的列表,可能第五个模型是其他,比如梯度提升或者XGBoost?但用户的问题中引用的文献提到了逻辑回归、决策树、随机森林、Adaboost等,所以可能第五个模型是Adaboost或者其他。但用户明确要求五种常见的,可能正确的列表是:逻辑回归、决策树、随机森林、SVM、以及比如K近邻或者朴素贝叶斯。但用户的问题中可能将SVM和支持向量机视为两个不同的,这显然有误,所以需要调整。可能用户的实际需求是五种模型,其中SVM即支持向量机,因此可能第五个模型是另一个如KNN,但用户的问题可能有误。在这种情况下,可能需要按照用户列出的模型来处理,即逻辑回归、决策树、随机森林、SVM、以及可能有一个重复,但更可能的是用户希望包括例如朴素贝叶斯或其他模型。不过根据用户提供的引用,引用[1]提到了逻辑回归和SVM,引用[2][4]提到随机森林(属于集成方法),引用[3]提到Adaboost、决策树、逻辑回归的集成。但用户明确要求五种模型,可能需要包括Adaboost或者梯度提升作为第五种,但用户的问题中列出的是五种:逻辑回归、决策树、随机森林、SVM和支持向量机。这里可能存在用户的笔误,将SVM重复了。因此,可能用户实际想要的是:逻辑回归、决策树、随机森林、SVM、以及另一个如KNN或朴素贝叶斯。但为了准确起见,可能需要按照用户的问题中的描述,尽管存在可能的错误。 不过,在用户的问题中,用户明确说:“五种常见的机器学习分类预测模型(如逻辑回归、决策树、随机森林、SVM和支持向量机)”,显然SVM就是支持向量机,所以这里明显重复了。因此,可能用户实际想要的是逻辑回归、决策树、随机森林、SVM、以及比如K近邻、朴素贝叶斯、或者梯度提升等。但用户可能在这里有笔误,所以作为回答者,可能需要指出这一点,并调整模型列表,比如将第五个模型替换为K近邻或者Adaboost。或者可能用户希望包括神经网络,但常见的是前几种。在这种情况下,可能用户的问题存在笔误,需要调整模型列表,比如五个模型为:逻辑回归、决策树、随机森林、SVM、K近邻,或者其他。 但考虑到用户提供的引用中,引用[3]提到了Adaboost、决策树、逻辑回归的集成,引用[4]提到Bagging,引用[2]提到随机森林,所以可能用户希望包括Adaboost作为第五个模型。不过用户的问题中明确列出的是SVM和支持向量机,这可能是重复的。因此,可能需要向用户确认,但由于用户无法在此交互中回复,作为回答者,可能需要按照常见的五种模型来处理,即逻辑回归、决策树、随机森林、SVM、以及比如朴素贝叶斯或K近邻。或者,可能用户确实希望使用五个模型,其中SVM和支持向量机是同一个,因此可能用户的问题有误,需要调整。在这种情况下,作为回答者,可能需要指出这一点,并假设第五个模型是另一个常见的,比如K近邻或朴素贝叶斯。 然而,在用户提供的引用中,引用[1]提到了逻辑回归和SVM,引用[2][4]涉及随机森林和Bagging,引用[3]提到Adaboost。因此,可能用户希望包括Adaboost作为第五个模型。因此,可能正确的五个模型是:逻辑回归、决策树、随机森林、SVM、Adaboost。 不过,用户的问题中明确列出了“支持向量机”,可能只是重复了SVM的中英文名称,因此可能需要将第五个模型调整为另一个,比如梯度提升或者XGBoost。但为了确保准确性,可能需要按照用户的问题中的列表,尽管存在重复,可能用户实际想表达的是五个不同的模型,其中可能包含笔误,需要调整。 在这种情况下,可能用户的问题存在笔误,正确的五个模型应为:逻辑回归、决策树、随机森林、SVM、K近邻。或者,另一个可能是,用户误将“支持向量机”作为另一个模型,而实际上SVM就是支持向量机,所以正确的五个模型是逻辑回归、决策树、随机森林、SVM、以及另一个如朴素贝叶斯。 考虑到用户引用的文献中提到了随机森林(属于集成方法),Adaboost(另一种集成方法),而用户要求五种模型,可能需要包括不同的类型。比如: 1. 逻辑回归 2. 决策树 3. 随机森林(集成方法) 4. SVM 5. 朴素贝叶斯 或者 K近邻 因此,在回答中,可能需要调整模型列表,并指出用户的可能笔误,但按照帮助用户的原则,可能需要假设用户希望的是这五个模型,其中SVM和支持向量机是同一个,因此可能用户实际想要的是四个模型,但需要五个,所以需要补充一个。但用户的问题中明确列出五个,因此必须处理。 可能正确的理解是,用户的问题存在笔误,正确的五个模型是:逻辑回归、决策树、随机森林、SVM、K近邻。因此,在回答中将第五个模型设为K近邻。或者,可能用户希望包括梯度提升,如XGBoost或LightGBM,但这些可能属于更高级的模型。不过,基于用户提供的引用,可能更倾向于使用Adaboost作为第五个模型,因为引用[3]提到了Adaboost。 综上所述,可能用户的五个模型应为:逻辑回归、决策树、随机森林、SVM、Adaboost。因此,在回答中,将Adaboost作为第五个模型。 现在,开始编写代码示例,包括数据预处理,五个模型的训练和评估。 数据预处理部分可能包括: - 加载数据(假设使用pandas) - 分割特征和目标变量 - 划分训练集和测试集 - 特征标准化(对于需要标准化的模型如逻辑回归、SVM、K近邻等) 然后,针对每个模型: 1. 逻辑回归:需要标准化特征 2. 决策树:不需要标准化 3. 随机森林:不需要标准化 4. SVM:需要标准化 5. Adaboost:通常基于决策树作为基学习器,不需要标准化 因此,在预处理时,可能需要为需要标准化的模型应用标准化,而对不需要的模型不应用。但为了简化,可能统一应用标准化,尽管对某些模型可能不必要。或者,分别处理,但会增加代码复杂度。可能用户的数据预处理代码已经处理了这些,所以示例中可以统一应用标准化。 因此,代码的大致结构如下: ```python import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier from sklearn.svm import SVC from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, classification_report # 数据预处理 data = pd.read_csv('your_data.csv') X = data.drop('target', axis=1) y = data['target'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) # 标准化特征 scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train) X_test_scaled = scaler.transform(X_test) # 初始化模型 models = { 'Logistic Regression': LogisticRegression(), 'Decision Tree': DecisionTreeClassifier(), 'Random Forest': RandomForestClassifier(), 'SVM': SVC(), 'AdaBoost': AdaBoostClassifier() } # 训练和评估 results = {} for name, model in models.items(): if name in ['Logistic Regression', 'SVM']: # 使用标准化后的数据 model.fit(X_train_scaled, y_train) y_pred = model.predict(X_test_scaled) else: # 使用未标准化的数据 model.fit(X_train, y_train) y_pred = model.predict(X_test) # 计算指标 accuracy = accuracy_score(y_test, y_pred) precision = precision_score(y_test, y_pred, average='weighted') recall = recall_score(y_test, y_pred, average='weighted') f1 = f1_score(y_test, y_pred, average='weighted') report = classification_report(y_test, y_pred) results[name] = { 'accuracy': accuracy, 'precision': precision, 'recall': recall, 'f1': f1, 'report': report } # 输出结果 for name, metrics in results.items(): print(f"Model: {name}") print(f"Accuracy: {metrics['accuracy']:.4f}") print(f"Precision: {metrics['precision']:.4f}") print(f"Recall: {metrics['recall']:.4f}") print(f"F1 Score: {metrics['f1']:.4f}") print("Classification Report:") print(metrics['report']) print("="*60) ``` 但这里存在一个问题:决策树、随机森林和Adaboost是否应该使用标准化后的数据?通常来说,基于树的模型不受特征缩放的影响,所以不需要标准化。而逻辑回归和SVM需要标准化。因此,在代码中,可能需要为需要标准化的模型使用X_train_scaled,而其他模型使用X_train。因此,在循环中根据模型类型选择是否使用标准化后的数据。 然而,上述代码在循环中判断模型名称是否为'Logistic Regression'或'SVM',从而决定是否使用标准化后的数据。这可能不够灵活,特别是当模型名称改变时。另一种方法是创建一个列表,说明哪些模型需要标准化,然后根据模型名称是否在该列表中进行判断。或者,可以分别处理每个模型。 另一种方法是为所有模型使用标准化后的数据,尽管对树模型来说可能不必要,但不会影响结果,只是增加了计算成本。因此,在示例中可以统一应用标准化后的数据给所有模型,但需要注意这可能对树模型没有帮助,但也不会导致错误。 因此,可以调整代码,对全部模型使用标准化后的数据: ```python # 标准化特征 scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train) X_test_scaled = scaler.transform(X_test) # 初始化模型 models = { 'Logistic Regression': LogisticRegression(), 'Decision Tree': DecisionTreeClassifier(), 'Random Forest': RandomForestClassifier(), 'SVM': SVC(), 'AdaBoost': AdaBoostClassifier() } # 训练和评估 results = {} for name, model in models.items(): model.fit(X_train_scaled, y_train) y_pred = model.predict(X_test_scaled) # 计算指标 accuracy = accuracy_score(y_test, y_pred) precision = precision_score(y_test, y_pred, average='weighted') recall = recall_score(y_test, y_pred, average='weighted') f1 = f1_score(y_test, y_pred, average='weighted') report = classification_report(y_test, y_pred) results[name] = { 'accuracy': accuracy, 'precision': precision, 'recall': recall, 'f1': f1, 'report': report } ``` 这样代码更简洁,但可能对决策树等模型不必要地应用了标准化。不过在实际中,这不会影响模型的训练,只是可能略微增加计算时间。因此,可以这样处理,以简化代码。 接下来,用户还需要每种模型的性能指标计算方法。在代码中已经使用了accuracy_score, precision_score, recall_score, f1_score,这些函数分别计算准确率、精确率、召回率和F1分数。此外,classification_report提供了更详细的每个类别的指标。 现在,需要解释每种模型的实现和评估指标,同时引用相关的文献。例如,随机森林属于集成方法,通过投票法进行决策,可以引用[2]和[4]。逻辑回归和SVM在引用[1]中提到。Adaboost属于提升方法,引用[3]中提到了Adaboost。 在回答中,需要分步骤说明如何构建和比较模型,包括代码示例和指标解释。同时,生成相关问题。 现在,组织回答结构: 1. 数据预处理步骤(假设用户已提供,但给出通用示例) 2. 模型构建(每个模型的代码和简要说明) 3. 评估指标计算(代码和指标解释) 4. 结果比较 5. 引用相关文献说明模型特点 在代码中,需要注意使用正确的模型类,例如AdaBoostClassifier来自sklearn.ensemble。 现在,确保代码正确: - LogisticRegression来自sklearn.linear_model - DecisionTreeClassifier来自sklearn.tree - RandomForestClassifier和AdaBoostClassifier来自sklearn.ensemble - SVC来自sklearn.svm 评估指标的计算需要注意average参数的选择,对于多分类问题,可能需要调整,但示例中使用weighted平均,适用于多类情况。 最后,生成相关问题,例如关于超参数调优、模型选择、特定模型的原理等。</think>以下是基于数据预处理后的机器学习模型实现与评估方法,包含五种常见分类模型的完整代码实现和性能指标计算方法: ### 一、数据预处理(示例模板) ```python import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler # 加载数据 data = pd.read_csv('dataset.csv') X = data.drop('target_column', axis=1) y = data['target_column'] # 划分数据集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 特征标准化(适用于需要标准化的模型) scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train) X_test_scaled = scaler.transform(X_test) ``` ### 二、模型构建与评估 #### 1. 逻辑回归 ```python from sklearn.linear_model import LogisticRegression from sklearn.metrics import classification_report lr = LogisticRegression(max_iter=1000) lr.fit(X_train_scaled, y_train) y_pred = lr.predict(X_test_scaled) print("逻辑回归性能:") print(classification_report(y_test, y_pred)) ``` > 逻辑回归通过sigmoid函数实现概率预测,适合线性可分数据[^1] #### 2. 决策树 ```python from sklearn.tree import DecisionTreeClassifier dt = DecisionTreeClassifier(max_depth=5) dt.fit(X_train, y_train) # 树模型不需要标准化 y_pred = dt.predict(X_test) print("决策树性能:") print(classification_report(y_test, y_pred)) ``` #### 3. 随机森林 ```python from sklearn.ensemble import RandomForestClassifier rf = RandomForestClassifier(n_estimators=100) rf.fit(X_train, y_train) y_pred = rf.predict(X_test) print("随机森林性能:") print(classification_report(y_test, y_pred)) ``` > 随机森林通过Bootstrap采样构建多个决策树,采用投票法集成结果[^2][^4] #### 4. 支持向量机(SVM) ```python from sklearn.svm import SVC svm = SVC(kernel='rbf', probability=True) svm.fit(X_train_scaled, y_train) y_pred = svm.predict(X_test_scaled) print("SVM性能:") print(classification_report(y_test, y_pred)) ``` #### 5. AdaBoost ```python from sklearn.ensemble import AdaBoostClassifier ada = AdaBoostClassifier(n_estimators=50) ada.fit(X_train, y_train) y_pred = ada.predict(X_test) print("AdaBoost性能:") print(classification_report(y_test, y_pred)) ``` > AdaBoost通过迭代调整样本权重提升弱分类器性能[^3] ### 三、统一评估指标计算 ```python from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score def evaluate_model(y_true, y_pred): return { 'Accuracy': accuracy_score(y_true, y_pred), 'Precision': precision_score(y_true, y_pred, average='weighted'), 'Recall': recall_score(y_true, y_pred, average='weighted'), 'F1-Score': f1_score(y_true, y_pred, average='weighted') } # 示例使用随机森林评估 metrics = evaluate_model(y_test, rf.predict(X_test)) print(pd.DataFrame([metrics])) ``` ### 四、模型比较方法 ```python results = {} models = {'LR': lr, 'DT': dt, 'RF': rf, 'SVM': svm, 'AdaBoost': ada} for name, model in models.items(): if name in ['LR', 'SVM']: # 需要标准化的模型 y_pred = model.predict(X_test_scaled) else: y_pred = model.predict(X_test) results[name] = evaluate_model(y_test, y_pred) pd.DataFrame(results).T.sort_values(by='F1-Score', ascending=False) ``` ### 五、核心指标解释 - **准确率**:$Accuracy = \frac{TP+TN}{TP+TN+FP+FN}$ - **召回率**:$Recall = \frac{TP}{TP+FN}$ - **F1值**:$F1 = 2 \times \frac{Precision \times Recall}{Precision + Recall}$ - **混淆矩阵**:可视化TP/TN/FP/FN的矩阵
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FarmerJohn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值