无接触式人脸视频脉搏信号提取方法研究
1 研究背景
在现实场景中,通过网络摄像头捕捉的人脸视频来测量心率是一项具有挑战性的任务。早期的工作主要集中在人脸跟踪和信号处理技术的应用,如去噪、去趋势和盲源分离。近年来,深度学习方法逐渐应用于信号提取。
2 实验评估
2.1 评估方法
评估了所提出的测量心率方法在DEAP标准数据集上的鲁棒性,并与经典方法的最佳组合(Unakafov 2018)以及当前最佳的深度学习框架(Qiu et al. 2019)进行了比较。
2.2 实验设置
- 输入窗口 :由于帧率为50 fps,需要更大的时间输入窗口,最终将窗口扩展到略超过10秒(512帧)。
- 训练方式 :网络训练了40个周期,使用80%的数据进行训练,20%的数据进行测试。
2.3 网络结构
基于Qiu et al. 2019的方法,但使用了更长的输入时间窗口,具体结构如下表所示:
| Input Size | Type/stride | Filter shape |
| — | — | — |
| 512 × 25 × 3 | Conv2D/s1 | 5 × 5 × 3 × 96 |
| 508 × 21 × 96 | SeparableConv2D/s1 | 3 × 3 × 96 × 96 |
| 506 × 19 × 96 | SeparableConv2D/s2 | 3 × 3 × 96 × 96