滑动平均模型

本文详细介绍了滑动平均模型在TensorFlow中的实现原理及应用,通过实例演示了如何使用tf.train.ExponentialMovingAverage类进行变量的滑动平均计算,以及如何通过调整衰减率控制模型更新速度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

滑动平均模型


  滑动平均模型可以使模型在测试数据上更健壮。在采用随机梯度下降算法训练神经网络时,使用滑动平均模型在很多应用中都可以在一定程度提高最终在测试数据上的表现。
  在Tensorflow中提供了tf.train.ExponentialMovingAverage来实现滑动平均模型。在初始化ExponentialMovingAverage时,需要提供一个衰减率(decay)。这个衰减率将用于控制模型更新的速度。ExponentialMovingAverage对每一个变量会维护一个影子变量(shadow variable),这个影子变量的初始值就是相应变量的初始值,而每次运行变量更新时,影子变量的值会更新为:shadow_variable=decay×shadow_variable+(1−decay)×variableshadow\_{\mathop{\rm var}} iable = decay \times shadow\_{\mathop{\rm var}} iable + (1 - decay) \times {\mathop{\rm var}} iableshadow_variable=decay×shadow_variable+(1decay)×variable  公式中shadow_variable为影子变量,variable为带更新的变量,decay为衰减率。从公式中,decay决定了模型更新的速度,decay越大模型越趋于稳定。在实际应用中,decay一般会设定成非常接近1的数(比如0.999)。为了使得模型在训练前期可以更新的更快,ExponentialMovingAverage初始化时提供了num_updates参数,那么每次使用的衰减率将是:min⁡{decay,1+num_updates10+num_updates}\min \{ decay,\frac{{1 + num\_updates}}{{10 + num\_updates}}\} min{decay,10+num_updates1+num_updates}
以下代码解释ExponentialMovingAverage是如何被使用的。

import tensorflow as tf

# 定义一个变量用于计算滑动平均,这个变量的初始值为0.这里手动指定了变量的
# 类型为tf.float32,因为所有需要计算滑动平均的变量必须是实数型。
v1 = tf.Variable(0, dtype=tf.float32)
# step变量模拟神经网络中迭代的论数,可以用于动态控制衰减率.
step = tf.Variable(0, trainable=False)
# 定义一个滑动平均类(class)。初始化时给定了衰减率(0.99)和控制衰减率的变量step。
ema = tf.train.ExponentialMovingAverage(0.99, step)
# 定义一个更新变量滑动平均的操作。这里需要给定一个列表,每次执行这个操作时,这个列表中的变量都会被更新。
maintain_averages_op = ema.apply([v1])

with tf.Session() as sess:
    # 初始化所有变量。
    init_op = tf.global_variables_initializer()
    sess.run(init_op)

    # 通过ema.average(v1)获取滑动平均之后变量的取值。在初始化之后变量v1的值和v1的滑动平均都为0.
    print(sess.run([v1, ema.average(v1)]))          # 输出[0.0,0.0]
    # 更新变量v1的值到5
    sess.run(tf.assign(v1, 5))
    # 更新v1的滑动平均值。衰减率为min{0.99, (1+step)/(10+step)=0.1}=0.1
    # 所以v1的华东平均值会被更新为0.1*0+0.9*5=4.5。
    sess.run(maintain_averages_op)
    print(sess.run([v1, ema.average(v1)]))      # 输出[5.0, 4.5]

    # 更新step的值为10000.
    sess.run(tf.assign(step, 10000))
    # 更新v1的值为10.
    sess.run(tf.assign(v1, 10)) 
    # 更新v1的滑动平均值。衰减率为min{0.99, (1+step)/(10+step)≈0.999}=0.99
    # 所以v1的滑动平均会被更新为0.99×4.5+0.01×10=4.555
    sess.run(maintain_averages_op)
    print(sess.run([v1, ema.average(v1)]))
    # 输出[10.0, 4.5549998]

    #再次更新滑动平均值,得到的新滑动平均值为0.99×4.555+0.01×10=4.60954。
    sess.run(maintain_averages_op)
    print(sess.run([v1, ema.average(v1)]))
    # 输出[10.0, 4.6094499]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值