快速傅里叶变换(FFT)
这几天在家没事慢慢研究了一下集训最后的一个专题FFT, 陈犇讲完还是有点不是很懂, 网上的很多资料都讲的不是很清晰, 由于这个算法太美了, 我有必要写点什么东西表示对前人智慧的赞美! (顺便练练打公式)
1.FFT这玩意是什么?有什么用?
FFT ( fast Fourier transform )的中文名是快速傅里叶变换, 在信号领域有很大的作用, 在ACM中我们常用FFT来求解多项式乘法
举个例子:
y1=2x4+3x2+5x+7
y2=5x3+7x2+11
FFT就是用来快速地计算y1⋅y2所得到的多项式
(y1⋅y2=10x7+14x6+15x5+68x4+70x3+82x2+55x+77)
2.FFT预备知识
1.多项式
1.多项式定义
A(x)=a0+a1x+a2x2+⋯+an−2xn−2+an−1xn−1
2.多项式表达方式
- 系数表达:(a0,a1,a2,⋯,an−2,an−1)
- 点值表达:选取n个(或以上)不同的值:
x0,x1,...xn−2,xn−1 , 对多项式A(x)求值得到A(x0),A(x1),⋅⋅⋅,A(xn−1)
那么就称{(xi,A(xi)),0≤i<n,i∈Z}为多项式A(x)的点值表示
举个例子:
f(x)=2+3x+x2这个多项式的系数表达式就是(2,3,1), 点值表达式就是{(0,2),(1,6),(2,12)}或者{(1,6),(2,12),(3,20),(4,30)}
n−1次多项式只要选取任意不同的n个点(或以上)都是可以的
显然不管是点值表达式还是系数表达式都可以唯一确定一个
3.多项式的乘法
- 系数表达式下的乘法
A(x)=∑i=0n−1aixi,B(x)=∑i=0n−1bixi
那么A(x)⋅B(x)就可以表示为
C(x)=∑i=02n−2(∑j=0iajbi−j)xi - 点值表达式下的乘法
{xi,C(xi)}={xi,A(xi)⋅B(xi)}
举个例子:
已知f1(x)=x2+1,f2(x)=x+3
f1(x)的点值表达式是{(0,1),(1,2),(2,5),(3,10)}
f2(x)的点值表达式是{(0,3),(1,4),(2,5),(3,6)}
那么f1(x)⋅f2(x)的点值表达式就是{(0,3),(1,8),(2,25),(3,60)}
2.单位复根
0.引入
先不考虑什么叫做单位复根
先在平面直角坐标系下画一个单位圆, 即{(x,y)|x2+y2=1}
现在我们要在这个圆上取n个点
举个例子:
当n=3时, 这些点的坐标按照逆时针顺序分别是
当n=4时, 这些点的坐标按照逆时针顺序分别是
当n=8时, 这些点的坐标按照逆时针顺序分别是
如果我们把平面直角坐标系看做是复平面, 那么上面那些点就变成了一个复数, 它们正是单位复根
1.单位复根定义
方程xn=1在复数域内一定有n个不同的解
那么规定:
也就是对应了上面我们从圆上逆时针选取的n个点中的第
举个例子:
w02=1(x2=1的第1个根是
w12=1(x2=1的第2个根是
w04=1(x4=1的第1个根是
w14=i(x4=1的第2个根是
w24=1(x4=1的第3个根是
w34=i(x4=1的第4个根是
w08=1(x8=1的第1个根是
w18=i(x8=1的第2个根是
w28=1(x8=1的第3个根是
w38=i(x8=1的第4个根是
w48=1(x8=1的第5个根是
w58=i(x8=1的第6个根是
w68=1(x8=1的第7个根是
w78=i(x8=1的第8个根是
我们不难归纳得到:
规定: 当k≥n时, wkn=wk%nn
例如:w64=w24,w208=w48
2.单位复根性质
下面的只讨论n是
画图我们可以很容易的证明
例如:(w38)2=w34,(w68)2=w64=w24
3.FFT原理
用一句话来说就是:将原多项式的系数表达式转换成点值表达式(O(nlog2n)), 再将多项式的点值表达式相乘得到目标表达式的点值表达式(O(n)), 再将点值表达式转换成为系数表达式(O(nlog2n))
为了能够在O(nlog2n)时间内得到多项式的点值表达式, FFT采取了一些小技巧, 选择n个单位复根进行求值, 由于单位复根的一些性质, 我们可以在
现在我们有一个最高次幂是m的多项式:
1.先将这个多项式的最高次数扩充到2的次方
2.分别带入n个不同的单位复根
可以写成一个矩阵:
没错我们就是要在O(nlog2n)时间内得到A(w0n),A(w1n),A(w2n),⋯,A(wn−2n),A(wn−1n)这n个值 ! ! !
3.单独考虑其中任意一个方程
3.将奇数项和偶数项分开
得到
4.假设两个新的多项式:
A0(x)=a0+a2x+⋯+an−2xn2−1
A1(x)=a1+a3x+⋯+an−1xn2−1
那么A(wkn)=A0(wkn/2)+wknA1(wkn/2)
我们只要再次用同样的方法计算A0(x)以及A1(x)就可以在O(nlog2n)时间内求出A(x)的所有点值表达式了
举个例子:
多项式f(x)=a0+a1x+a2x2+a3x3, 我们要计算A(w04),A(w14),A(w24),A(w34)这4个点的值
1.
A(w04)=A0(w02)+w04A1(w02)
A(w14)=A0(w12)+w14A1(w12)
A(w24)=A0(w02)+w24A1(w02)
A(w34)=A0(w12)+w34A1(w12)
2.
A(w02)=A0(w01)+w02A1(w01)
A(w12)=A0(w01)+w12A1(w01)
3.
因为w01=1所以可以直接得到它的值, 也就是当前的系数
上述过程就称为 离散傅里叶变换(Discrete Fourier Transform)
我们将多个多项式的点值表达式相乘, 获得了目标表达式的点值表达式
那么: 怎么获得目标表达式的系数表达式呢?
下面我们将要介绍 逆离散傅里叶变换(Inverse Discrete Fourier Transform)
上面的矩阵就是DFT的过程, 下面的矩阵就是IDFT的过程
其实差异并不大, 我们只需要将原来DFT中wkn换成w−kn,结果再乘上1n就从DFT变成了IDFT