【PowerQuery专栏】使用Table.Combine 实现表的数据合并

Table.Combine函数的功能是实现两个数据表的合并,通常用于两个具有相同列名称的数据表合并,函数参数包含两个参数:

  • 参数1为列表数据,数据类型为表类型,值为多个表数据列表
  • 参数2为行偏移数据,数据类型为数值类型,值为首行偏移数据

函数的结果为表数据类型,图为Table.Combine参数。

  • Table.Combine(Table as list,Column as any)

通常我们通过Table.Combine函数进行多个表数据的合并,图为函数执行的场景与结果。

  • 表1=#table({"姓名","性别","年龄"},{ {"张三","男",12},{"李四","男",13
### 使用 Power Query 合并多个的最佳实践 #### 方法一:通过 Power Query 合并同一工作簿内的多个 Sheet 当需要在一个 Excel 文件中合并多个 Sheet 时,可以通过以下方式实现。这种方法适用于同一个文件中有多个工作的情况。 1. **加载数据到 Power Query** 打开 Excel 并进入“数据”选项卡,点击“获取数据” -> “从文件” -> “从工作簿”。选择目标文件后,在导航器窗口中可以看到所有的 Sheet 。选中这些并将它们加载到 Power Query 中[^1]。 2. **组合多个** 在 Power Query 编辑器中,使用 `Table.Combine` 函数合并多个的内容。假设已经将所有加载为一个列对象,则可以执行如下操作: ```m CombinedTables = Table.Combine({Sheet1, Sheet2, Sheet3}) ``` 3. **统一字段名称和结构** 如果各个的字段名称或顺序不同,需先调整字段使其一致后再进行合并。这一步骤对于后续分析非常重要[^1]。 --- #### 方法二:通过 Power Query 合并多个独立的 Excel 工作簿 如果需要处理的是来自不同文件的多个 Excel 工作簿,以下是推荐的操作流程: 1. **创建连接到文件夹** 将所有待合并的 Excel 文件放入同一个文件夹中。打开 Excel 的“数据”选项卡,依次点击“获取数据” -> “从文件” -> “从文件夹”,选择包含这些文件的目标文件夹[^3]。 2. **预览和筛选文件内容** 导入完成后,Power Query 会显示文件夹中的所有文件及其元信息(如文件名)。可以根据需求过滤特定类型的文件或排除无关项。 3. **提取每份文件的具体格** 添加自定义列以解析每个文件的实际内容。具体做法是在查询编辑器中添加一个新的自定义列,并应用以下公式: ```m = Excel.Workbook([Content], true) ``` 这样能够读取每个 Excel 文件中的所有工作。 4. **展开嵌套并进一步清理** 展开新生成的嵌套(通常是名为“Data”的列),确保保留必要的字段(例如原始文件路径、工作名称等作为辅助标记)。注意在展开过程中可能遇到较多列数,应留意是否需要启用“加载更多”功能。 5. **最终合并与清洗** 完成上述步骤之后,即可利用 `Table.Combine` 或其他方法完成实际的数据拼接过程。最后记得移除多余的中间列以及重复记录。 --- #### 方法三:自动化定期更新机制 针对动态变化的大规模数据集场景,建议设置自动刷新逻辑以便持续同步最新状态。主要涉及以下几个方面配置要点: - 设置外部链接属性允许后台运行; - 调整计划任务频率满足业务时效性要求; - 对异常情况进行监控报警提示。 --- ```python # Python 示例代码片段用于模拟批量处理思路 (仅参考意义) import pandas as pd from glob import iglob def merge_excel_files(folder_path): all_dataframes = [] for file_name in iglob(f"{folder_path}/*.xlsx"): df_list = pd.read_excel(file_name, sheet_name=None) # 获取单个Excel里的所有sheet combined_df = pd.concat(df_list.values(), ignore_index=True) # 合并当前Excel的所有sheets all_dataframes.append(combined_df) final_result = pd.concat(all_dataframes, ignore_index=True) # 总体合并 return final_result ``` --- ### 注意事项 - 数据源的一致性和标准化至关重要,尤其是日期格式、货币单位等方面差异可能导致错误。 - 若某些特殊情况下存在跨平台协作环境下的编码兼容问题也需要注意解决办法[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

雾岛心情

欢迎你的打赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值