Transformer解码器工作流程

打个比方,假设我们正在读一本书,并且需要根据书中的内容生成一个总结或翻译成另一种语言。解码器就像是一个智能助手,它帮助我们理解编码器传递的信息,并逐步构建出新的句子。

场景

想象你正在阅读一本关于《动物行为学》的书,其中有一句话:“猫追了狗”。我们要用Transformer解码器来根据编码器提供的信息生成一句话,比如将其翻译成英文:“The cat chased the dog.”

解码器工作流程

1. 把单词变成数字(嵌入与位置编码)

和编码器一样,我们需要将目标语言的每个单词转换为计算机可以处理的数字形式:

  • 词汇嵌入(Embedding):将每个单词转换为一个向量,这个向量能够捕捉到单词的语义信息。

  • 位置编码(Positional Encoding):为了保留单词在句子中的顺序信息,我们给每个单词添加一个位置编码。

# 初始化嵌入层和位置编码层(与编码器相同)
embedding_layer = nn.Embedding(len(target_vocab), d_model)
positional_encoding_layer = PositionalEncoding(d_model)

# 假设我们有一个简单的分词器和目标语言的词汇表
target_vocab = {'<pad>': 0, 'the': 1, 'cat': 2, 'chased': 3, 'dog': 4}
targe
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

编码浪子

您的支持将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值