mmcv 安装记录

安装mmcv,我选择的是源码安装,按照官方给出的步骤,运行命令

MMCV_WITH_OPS=1 pip install -e .

出现错误提示,如下:

distutils.errors.DistutilsError: Could not find suitable distribution for Requirement.parse(‘pytest-runner’)

于是安装pytest-runner:

pip install pytest-runner

随后再次运行安装命令,仍然出现错误,于是仔细阅读setup.py的源码:

# 前面代码的省略
setup(
    name='mmcv' if os.getenv('MMCV_WITH_OPS', '0') == '0' e
### 安装mmcv版本0.9与Python 3.6环境 要在Python 3.6环境中安装特定版本的 `mmcv`(即版本0.9),可以按照以下方法操作: #### 方法一:通过pip安装指定版本 如果目标机器已配置好支持Python 3.6的pip工具,则可以通过命令行直接安装所需的 `mmcv` 版本。 运行以下命令来安装 `mmcv==0.9`: ```bash pip install mmcv==0.9 ``` 此命令会自动下载并安装对应版本的 `mmcv` 库到当前激活的Python虚拟环境中[^1]。 #### 方法二:验证依赖项兼容性 由于某些库可能对不同版本的Python存在兼容性问题,在执行上述命令之前,建议先确认所使用的Python解释器是否满足最低要求。对于Python 3.6的支持情况,通常需要查阅官方文档或源码仓库中的说明文件以获取更详细的指导信息[^2]。 另外需要注意的是,部分深度学习框架及其扩展模块可能会绑定特定CUDA驱动程序或者cuDNN SDK版本号,请确保本地开发平台已经正确设置了这些必要的硬件加速组件[^3]。 #### 方法三:手动编译安装(可选) 当预构建包无法适用于特殊场景时,可以选择从源代码开始自行构建适合自己的软件副本。具体流程如下所示: 1. **克隆项目存储库** 使用Git客户端拉取最新版源码至工作目录下: ```bash git clone https://github.com/open-mmlab/mmcv.git cd mmcv ``` 2. **切换分支/标签** 找到对应的release tag名称, 并检出该历史提交记录作为基础进行后续定制化修改. ```bash git checkout tags/v0.9 -b v0.9-branch ``` 3. **准备环境变量** 设置一些全局参数以便于交叉编译过程顺利开展. 4. **启动makefile脚本** 根据提示逐步完成整个组装环节直至最终产物生成完毕为止. 以上便是关于如何利用Python 3.6成功部署MMDetection核心组成部分之一——MMCV Version 0.9 的解决方案概述。
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值