- 博客(14)
- 收藏
- 关注
原创 Matplotlib 绘图标记代码实例
Matplotlib提供了丰富的绘图标记功能,包括20多种预设标记样式(如圆形、方形、三角形等),支持自定义标记颜色、大小、边缘样式和填充效果。用户可以组合标记与不同线型,在散点图中实现更灵活的控制,甚至创建自定义形状标记路径。此外,标记功能还支持结合文本注释、误差线、3D绘图和动画效果,通过调整marker、markersize、markerfacecolor等属性实现多样化的数据可视化效果。
2025-09-04 08:15:00
424
原创 SciPy显著性检验完全指南
SciPy提供了一套完整的显著性检验工具集,包括参数检验(t检验、ANOVA)和非参数检验(Mann-Whitney U、Kruskal-Wallis)。该库支持单样本/独立样本/配对样本比较、分类数据检验(卡方)以及多重检验校正。使用时需根据数据分布特性(正态性、方差齐性)和实验设计选择合适的检验方法,并通过p值判断统计显著性(通常以p<0.05为阈值)。代码示例展示了各种检验的实现方式及结果解读要点。
2025-09-04 07:45:00
139
原创 SciPy插值方法全解析
SciPy的scipy.interpolate模块提供丰富的插值工具,包括一维(线性/三次样条)、多维(网格/RBF)等插值方法。关键方法有interp1d、griddata、Rbf等,支持数据平滑、缺失值填补等应用。不同方法各具特点:线性插值计算快但不可导,三次样条平滑但可能过冲,PCHIP保持单调性。实际应用需考虑数据特性、计算成本和边界效应,建议通过交叉验证评估效果,避免外推风险。该模块能满足大多数科学计算的插值需求。
2025-09-03 08:40:48
400
原创 SciPy Matlab 数组的代码实例
本文对比了SciPy/NumPy与MATLAB在数组操作上的异同,涵盖数组创建、索引、数学运算、常用函数、广播机制、稀疏矩阵和性能优化等方面。MATLAB索引从1开始,而NumPy从0开始;两者在矩阵乘法和点乘操作上语法相似但符号不同;常用线性代数函数功能对应但命名有差异;广播机制和向量化优化思路基本一致。文中提供了详细的代码示例,帮助熟悉MATLAB的用户快速掌握SciPy/NumPy的数组操作方法。
2025-09-03 08:39:50
283
原创 OpenCV物体识别实战指南
OpenCV提供了多种物体识别技术,包括传统方法和深度学习方法。文中介绍了四种主要技术:1)基于Haar特征分类器的人脸检测;2)使用预训练深度学习模型(如YOLO)进行高精度检测;3)基于SIFT/SURF的特征匹配算法;4)自定义HOG+SVM分类器训练。这些方法各具特点,开发者可根据识别精度和计算资源需求选择合适方案。OpenCV的开源特性使其成为计算机视觉领域的重要工具,支持从基础检测到复杂识别任务。
2025-09-02 09:58:14
427
原创 OpenCV 人脸检测的代码实例
OpenCV提供了两种人脸检测方法:基于Haar级联分类器和深度学习模型。Haar方法通过预训练XML文件快速定位人脸,而DNN模型(如Caffe)精度更高但计算量较大。文章详细展示了两种方法的代码实现,包括图像和视频实时检测,并提供了性能优化技巧(参数调整、多线程处理)和常见问题解决方案(误检处理、速度优化)。这套方案可帮助开发者构建高效准确的OpenCV人脸检测系统。
2025-09-02 09:57:06
674
原创 OpenCV 图像平滑处理
OpenCV提供了多种图像平滑处理方法,包括均值滤波、高斯滤波、中值滤波和双边滤波。均值滤波通过计算邻域像素平均值实现简单模糊;高斯滤波采用加权平均获得更自然的平滑效果;中值滤波能有效去除椒盐噪声;双边滤波在平滑同时保留边缘信息。文章通过代码示例展示了各方法的实现效果,并比较了不同滤波核大小的影响。合理选择滤波方法和参数是图像处理的关键,OpenCV的多样化平滑技术能满足不同场景需求。
2025-09-01 08:15:00
442
原创 OpenCV 图像算术运算
OpenCV提供了多种图像算术运算方法,包括加法、减法、乘法、除法和位运算。这些运算可用于图像增强、混合、去噪等任务。加法运算(cv2.add)会进行饱和处理,而加权加法(cv2.addWeighted)可实现图像混合效果。减法运算(cv2.subtract)常用于背景去除,位运算则适合掩模操作。这些算术运算常与阈值化等技术结合使用,能实现更复杂的图像处理功能。通过这些基础运算,可以完成各种计算机视觉任务。
2025-09-01 07:45:00
451
原创 OpenCV 图像阈值处理
OpenCV图像阈值处理是图像分割的常用技术,主要包括简单阈值、自适应阈值和Otsu阈值三种方法。简单阈值通过固定阈值分类像素,适用于均匀光照图像;自适应阈值根据局部区域计算阈值,适合光照不均的场景;Otsu方法自动确定最佳阈值,适用于双峰直方图图像。文章通过Python代码示例展示了不同方法的实现效果,并对比了它们的适用场景,最后以文档二值化案例说明实际应用。这些方法为图像处理任务提供了灵活高效的解决方案。
2025-08-31 12:00:00
277
原创 OpenCV 图像基本操作
摘要:本文介绍了OpenCV图像处理的基本操作,包括图像读取与显示(cv2.imread/cv2.imshow)、属性获取、裁剪缩放、颜色空间转换、图像保存等。详细说明了图形绘制、文本添加、阈值处理、边缘检测(Canny)、图像滤波(Gaussian/Median)等核心功能,以及旋转翻转、像素访问等操作。这些基础功能通过NumPy数组实现,适用于计算机视觉任务开发。
2025-08-31 11:45:00
225
原创 OpenCV 图像处理基础
本文介绍了OpenCV图像处理的基础操作,包括安装、图像读取显示和核心处理技术。主要内容包括:色彩空间转换(BGR转灰度/HSV)、图像滤波(高斯/中值)、边缘检测(Canny)、二值化处理、轮廓检测、几何变换(旋转/缩放)、直方图均衡化以及特征检测(SIFT)和模板匹配。通过代码示例演示了每个功能的实现方法,如cv2.imread()读取图像、cv2.cvtColor()转换色彩空间、cv2.threshold()进行二值化等。这些基础操作涵盖了图像处理的主要环节,为开发者提供了快速入门指南。
2025-08-30 10:30:00
300
原创 OpenCV 基础模块
OpenCV是一个开源的计算机视觉库,提供多种图像处理和视频分析功能。文章介绍了几个核心模块的典型应用,包括图像读取与显示、颜色空间转换、图像滤波、边缘检测、特征匹配、视频处理和几何变换。每个模块都配有Python代码示例,如使用cv2.imread/imshow显示图像、cvtColor转换颜色空间、Canny算法检测边缘等。这些基础功能可以组合使用,为更复杂的计算机视觉任务奠定基础。通过示例代码,开发者可以快速掌握OpenCV的核心操作。
2025-08-30 06:45:00
448
原创 OpenCV 入门实例
本文介绍了OpenCV的基础安装与核心功能实现。通过pip安装OpenCV后,可进行图像读取、显示和灰度转换。视频处理部分包括摄像头实时捕获和视频文件播放。图像处理技术涵盖高斯模糊、Canny边缘检测、Haar级联人脸识别和ORB特征匹配。此外还演示了几何变换、阈值化、形态学操作、轮廓检测和模板匹配等算法,并展示了HSV颜色空间分割和YOLOv3深度学习集成等高级应用。最后提供了GPU加速和图像降采样等优化技巧。
2025-08-29 10:13:59
362
原创 NLP 多模态预训练模型
多模态预训练模型通过联合学习文本、图像等不同模态数据,实现跨模态理解和生成。主流模型基于Transformer架构,采用单/双流设计进行模态融合,配合对比学习等训练方法。典型应用包括图文检索(如CLIP)和图像描述生成(如OFA),涉及对比损失、量化部署等技术。训练需注意模态平衡和梯度优化,评估常用Recall@K等指标。这类模型通过大规模预训练展现了强大的跨模态迁移能力。
2025-08-29 10:13:02
536
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人