OpenCV 人脸检测的代码实例

OpenCV 人脸检测技术

OpenCV 是一个开源的计算机视觉库,支持多种编程语言,广泛用于图像处理和机器学习任务。人脸检测是 OpenCV 的核心功能之一,基于 Haar 级联分类器或深度学习模型实现。以下是具体实现方法和代码示例。


Haar 级联分类器实现人脸检测

Haar 级联分类器是 OpenCV 的经典人脸检测方法,通过训练好的 XML 文件快速定位人脸。以下是具体实现步骤。

加载 Haar 级联模型
import cv2

# 加载预训练模型
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')

检测并绘制人脸框
def detect_faces_haar(image_path):
    img = cv2.imread(image_path)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    
    # 检测人脸
    faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
    
    # 绘制矩形框
    for (x, y, w, h) in faces:
        cv2.rectangle(img, (x, y), (x+w, y+h), (255, 0, 0), 2)
    
    cv2.imshow('Haar Face Detection', img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

# 调用函数
detect_faces_haar('test.jpg')


基于 DNN 的人脸检测

OpenCV 支持加载深度学习模型(如 Caffe 或 TensorFlow)实现更高精度的人脸检测。

加载预训练 DNN 模型
# 模型文件路径
prototxt = 'deploy.prototxt'
model = 'res10_300x300_ssd_iter_140000.caffemodel'
net = cv2.dnn.readNetFromCaffe(prototxt, model)

DNN 检测人脸代码
def detect_faces_dnn(image_path):
    img = cv2.imread(image_path)
    (h, w) = img.shape[:2]
    
    # 预处理图像
    blob = cv2.dnn.blobFromImage(cv2.resize(img, (300, 300)), 1.0, (300, 300), (104.0, 177.0, 123.0))
    net.setInput(blob)
    detections = net.forward()
    
    # 绘制检测框
    for i in range(detections.shape[2]):
        confidence = detections[0, 0, i, 2]
        if confidence > 0.5:  # 置信度阈值
            box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
            (startX, startY, endX, endY) = box.astype("int")
            cv2.rectangle(img, (startX, startY), (endX, endY), (0, 255, 0), 2)
    
    cv2.imshow('DNN Face Detection', img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

# 调用函数
detect_faces_dnn('test.jpg')


实时视频人脸检测

结合摄像头实现实时人脸检测。

摄像头实时检测代码
def live_face_detection():
    cap = cv2.VideoCapture(0)
    
    while True:
        ret, frame = cap.read()
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        
        # Haar 检测
        faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5)
        for (x, y, w, h) in faces:
            cv2.rectangle(frame, (x, y), (x+w, y+h), (255, 0, 0), 2)
        
        cv2.imshow('Live Face Detection', frame)
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
    
    cap.release()
    cv2.destroyAllWindows()

# 启动实时检测
live_face_detection()


性能优化技巧

  1. 调整参数

    • Haar 检测的 scaleFactorminNeighbors 影响检测速度和精度。较小的 scaleFactor(如 1.05)提高精度但降低速度。
  2. 多线程处理
    在实时检测中,将图像捕获和处理分离到不同线程以提高帧率。

  3. 模型选择
    DNN 模型精度更高,但需要更多计算资源。根据硬件条件选择合适模型。


常见问题解决

  • 误检或漏检
    调整置信度阈值(DNN)或尝试不同模型(如 haarcascade_frontalface_alt2.xml)。

  • 速度慢
    降低输入图像分辨率或使用硬件加速(如 OpenVINO)。

通过以上方法,可以快速实现高效、准确的 OpenCV 人脸检测系统。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值