
LLM教程
文章平均质量分 96
技术狂潮AI
大模型技术应用入门|实战指南!我们专注于人工智能、LLM、RAG等前沿技术,探索大模型业务场景落地,分享技术干货、研究报告和IT技术资料。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
颠覆认知!LLM评估原来可以这么简单
生成式 AI (Generative AI) 和大语言模型 (LLM),例如 GPT-4、Llama 和 Claude,已经开启了 AI 驱动应用和用例的新时代。然而,评估 LLM 通常需要用到许多复杂的库和方法,这容易让人望而却步。实际上,LLM 评估并不一定复杂。你不需要复杂的管道、数据库或基础架构组件就可以构建有效的评估管道。Discord 就提供了一个很好的例子:他们为 2000 万用户构建了一个聊天机器人,并专注于实施易于运行和快速实施的评估方法。原创 2024-07-26 08:45:00 · 1048 阅读 · 0 评论 -
如何使用 DSPy 构建多步骤推理的 RAG 系统
检索增强生成 (RAG) 系统已经成为构建基于大语言模型 (LLM) 应用的强大方法。RAG 系统的工作原理是:首先使用检索模型从外部知识源检索相关信息,然后使用这些信息来提示 LLM 生成最终的响应。然而,基本的 RAG 系统(也称为朴素 RAG)在处理需要对多条信息进行推理的复杂查询时可能会遇到挑战。多步骤检索的出现正是为了解决这一问题。在多步骤检索中,系统会跨多个步骤或“跳跃”收集信息,以回答复杂的问题或收集详细信息。这种技术在高级问答系统中很常见,其中多个来源或文档包含回答问题所需的信息。构建多步骤原创 2024-07-25 14:00:05 · 1389 阅读 · 1 评论 -
RAG 高级应用:基于 Nougat、HTML 转换与 GPT-4o 解析复杂 PDF 内嵌表格
RAG(检索增强生成)应用最具挑战性的方面之一是如何处理复杂文档的内容,例如 PDF 文档中的图像和表格,因为这些内容不像传统文本那样容易解析和检索。前面我们有介绍过如何使用LlamaIndex提供的LlamaParse技术解析复杂PDF文档(文档中包含图片和表格)LlamaParse 技术整体来看,对于PDF文档常规文本的提取还是比较准确的,但对于表格内容的处理,检索准确率依然还存在比较大的空间。原创 2024-05-29 21:53:45 · 3008 阅读 · 1 评论 -
零门槛微调大模型:基于 Ludwig 低代码框架使用 LoRA 技术微调实践
Ludwig 就像一位武功高强的引路人,为你打开了 AI 世界的大门。它简单易用,功能强大,即使是初学者也能轻松上手。Ludwig 的低代码框架为将大语言模型 (LLM) 微调至特定任务提供了一种高效便捷的途径,它在易用性和强大的自定义能力之间取得了良好的平衡。通过利用 Ludwig 全面的模型开发、训练和评估功能,开发人员可以构建出针对特定用例量身定制的强大且高性能的 AI 模型,以满足各种现实世界应用场景的需求。以下是 Ludwig 的核心优势:低代码。原创 2024-05-23 21:27:18 · 1979 阅读 · 1 评论 -
新手入门:大语言模型训练指南
本文是一份全面的新手指南,旨在指导初学者如何有效地培训大型语言模型(LLM)。文章首先介绍了Transformer架构的基础知识,这是现代LLMs的核心。接着,它深入探讨了预训练和微调的概念,强调了这些步骤在模型开发中的重要性。文章还详细讨论了低阶适应(LoRA)技术,这是一种新兴的高效训练方法,可以显著降低大型模型训练的计算和内存成本。此外,指南涵盖了关键的超参数调整,如批量大小、学习率和梯度累积,这些对于优化模型性能至关重要。原创 2024-04-11 23:54:03 · 5838 阅读 · 0 评论