
图神经网络
文章平均质量分 87
宝贝儿好
李园园
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【GNN】第九章:序列图
CSDN要每天发布2篇才给推广!请问这种文章,何方神圣可以每天写2篇的?原创 2025-08-06 13:56:36 · 101 阅读 · 0 评论 -
【GNN】第八章:图神经网络架构中的基础设施——GCN、GAT、GraphSAGE、TopKPooling、GAP、GMP
本文系统介绍了图神经网络(GNN)中的核心层结构及其应用。重点解析了三种典型图卷积层:GCN(基于度矩阵加权)、GAT(引入注意力机制)和GraphSAGE(支持大规模图的采样聚合方法),详细阐述了它们的计算原理、特性差异及适用场景。同时深入讲解了TopKPooling剪枝池化层的工作原理,以及GAP/GMP全局池化层在图分类任务中的应用。原创 2025-08-06 13:53:33 · 958 阅读 · 0 评论 -
【GNN】第七章:图卷积层GCN
本文系统介绍了图卷积网络(GCN)的核心原理与应用。首先阐明GCN与CNN的本质区别,强调GCN专门处理图结构数据。重点解析了GCN层的消息传递机制,包括邻接矩阵和度矩阵在特征聚合中的作用,以及3-4层网络深度的最佳实践。通过PyG实现演示了GCN的特征重构过程,并指出GCN层数过多会导致过度平滑问题。最后以空手道俱乐部数据集为例,对比了全监督和半监督学习的效果:仅用4个标签即可达到90%准确率,展现了GCN强大的拓扑信息利用能力。本文为理解GCN的工作原理和实际应用提供了清晰的技术路径。原创 2025-08-04 10:53:01 · 679 阅读 · 0 评论 -
【GNN】第六章:图数据处理:PyG中相关模块介绍
本文摘要: 本文系统介绍了图神经网络(GNN)中数据处理的关键技术与方法。重点讲解了PyTorch Geometric(PyG)框架的核心数据模块:1)Data类用于构建图对象;2)Dataset和InMemoryDataset类分别处理大型和小型数据集;3)内置基准数据集的使用方法;4)自定义数据集的实现方案,包括继承InMemoryDataset(内存加载)和Dataset(按需加载)两种方式。通过ENZY原创 2025-08-04 10:39:15 · 1018 阅读 · 0 评论 -
【GNN】第五章:传统图机器学习算法:Deepwalk、Node2Vec、PageRank
摘要:本文介绍了三种传统图机器学习算法——DeepWalk、Node2Vec和PageRank,用于将图数据嵌入低维向量空间。DeepWalk通过随机游走生成节点序列,类似NLP的滑窗操作,再使用Word2Vec训练得到节点嵌入向量。Node2Vec在DeepWalk基础上引入有偏随机游走策略,通过调整参数p和q控制游走方向,能捕捉节点不同特性。PageRank则用于计算节点重要性排名。文章还演示了如何使用Python实现这些算法,并指出基于随机游走的方法存在无法泛化新节点、缺乏全局信息等局限性,为后续深度原创 2025-03-27 21:53:41 · 1380 阅读 · 0 评论 -
【GNN】第四章:表示学习算法Word2Vec、CBOW、Skip-gram、hierarchical softmax、负采样
本文系统介绍了Word2Vec词向量表示学习算法及其在图数据挖掘中的应用。首先阐述了向量化表示的重要性,指出Word2Vec是NLP领域的基础工具,也是图机器学习算法Node2Vec的前身。文章详细解析了Word2Vec的两种模型架构(CBOW和Skip-gram)和两种优化方法(层次Softmax和负采样),通过大量代码示例展示了实现过程。 重点内容包括:1)向量化表示的核心思想是将离散符号映射为连续向量;2)Word2Vec通过自动构建监督任务实现无监督学习;3)CBOW通过上下文预测中心词,而Skip原创 2025-03-11 20:24:22 · 1746 阅读 · 0 评论 -
【GNN】第三章:传统图机器学习中的特征工程
因为每个点都不是孤立的,它都是和一些别的点有联系的,所以一个点的特征的变化是要受到和它有边相连的点的影响的。比如有的任务是求点的(比如对点进行分类、回归等任务),有的是求边的(比如对边进行分类、回归等任务),有的还是求全局的就是Graph级别的任务(比如设计分子结构等任务)。图是一个全局的概念。vi节点k跳远的邻接节点(neighbors with k-hop),指的是到节点vi走k步的节点(一个节点的2跳远的邻接节点包含了自身)。比如上图的节点A的邻接节点就是E,而节点E的邻接节点是ABCD四个节点。原创 2025-03-04 11:02:16 · 808 阅读 · 0 评论 -
【GNN】第二章:图论、及其工具NetworkX
因为每个点都不是孤立的,它都是和一些别的点有联系的,所以一个点的特征的变化是要受到和它有边相连的点的影响的。比如有的任务是求点的(比如对点进行分类、回归等任务),有的是求边的(比如对边进行分类、回归等任务),有的还是求全局的就是Graph级别的任务(比如设计分子结构等任务)。图是一个全局的概念。vi节点k跳远的邻接节点(neighbors with k-hop),指的是到节点vi走k步的节点(一个节点的2跳远的邻接节点包含了自身)。比如上图的节点A的邻接节点就是E,而节点E的邻接节点是ABCD四个节点。原创 2025-03-04 10:56:03 · 1308 阅读 · 0 评论 -
【GNN】第一章:知识体系架构概览
的PyTorch的扩展库,几何深度学习指的是应用于图和其他不规则、非结构化数据的深度学习。是非常随意的,它不像MLP、CNN、RNN、Transformer那样,必须要数据规整、要resize、要截断填补等,图神经网络要求的数据只要有点有边就行,至于几个点几条边都随意。然而在真实世界中,并不是所有的事物都可以用结构化数据来表示,比如社交网络、知识图谱、电商购物、复杂的文件系统、蛋白质相互作用关系、分子结构等,这些事情就没法用结构化数据来表示,只能以。的深度学习方法,就是将神经网络模型拓展到图数据计算领域。原创 2025-03-03 11:46:24 · 845 阅读 · 0 评论