题目描述
天际线如下图所示。每个建筑物的几何信息用三元组 [Li,Ri,Hi]
表示,其中 Li
和 Ri
分别是第 i 座建筑物左右边缘的 x 坐标,Hi
是其高度。可以保证 0 ≤ Li, Ri ≤ INT_MAX
, 0 < Hi ≤ INT_MAX
和 Ri - Li > 0
。您可以假设所有建筑物都是在绝对平坦且高度为 0 的表面上的完美矩形。
输出是以 [ [x1,y1], [x2, y2], [x3, y3], ... ]
格式的“关键点”(图B中的红点)的列表,它们唯一地定义了天际线。关键点是水平线段的左端点。请注意,最右侧建筑物的最后一个关键点仅用于标记天际线的终点,并始终为零高度。此外,任何两个相邻建筑物之间的地面都应被视为天际线轮廓的一部分。
解题思路
这个题有点难了,而且解题思路技巧性还比较强,就看看思路,代码能看懂并理解就好。推荐大佬题解。
-
扫描线法:使用扫描线,从左至右扫过。如果遇到左端点,将高度入堆,如果遇到右端点,则将高度从堆中删除。使用 last 变量记录上一个转折点。
解释:很巧妙的做法,利用了 muliset 这一数据结构自动排序的特性。
multiset中的元素是 pair,对pair排序默认的方式是,先比较 first,哪个小则排在前;first 相等则 second小的排在前。 而 first 这里表示横坐标,second 为负时,表示建筑的左侧在这一位置,其绝对值表示建筑物的高度;second 为正时,表示建筑物的右侧在这一位置。
所以对muliset遍历时,首先会取出横坐标小的点。如果2个点横坐标相等,会先取出 second 小的点,对于负数来说,其实就是高度更高的建筑。也就是说,如果一个点上有高度不同的建筑,会先取高的出来放入高度集合。如果集合中高度最大值和之前高度不同,则直接将此处的x坐标和此时集合中的最大值放入结果,并更新last。后面更低高度的建筑加入并不会改变最大高度。
如果second为正,表示建筑物在此处结束,需要把相应高度从高度集合中删除。有不同建筑同时在此处结束时,则会先让较低的建筑离开,因为它们不会改变最大高度。只有当最高的建筑物离开时,才进行改变。
如果一个位置既有建筑物进来,又有建筑物离开,会先选择进来的,同理。 总结起来,我就是想说,这里把建筑物起始点的高度设为负数,真的很巧妙。(具体看代码,有注释。)
参考代码
class Solution {
public:
vector<vector<int>> getSkyline(vector<vector<int>>& buildings) {
multiset<pair<int, int>> all; // 自动排序,默认从小到大
vector<vector<int>> res;
for (auto& e : buildings) {
all.insert(make_pair(e[0], -e[2])); // critical point, left corner
all.insert(make_pair(e[1], e[2])); // critical point, right corner
}
multiset<int> heights({0}); // 保存当前位置所有高度。(从小到大排序)
vector<int> last = {0, 0}; // 保存上一个位置的横坐标以及高度
for (auto& p: all) {
if (p.second < 0)
heights.insert(-p.second); // 左端点,高度入堆
else
heights.erase(heights.find(p.second)); // 右端点,移除高度
// 当前关键点,当前高度集合heights中的最大高度
auto maxHeight = *heights.rbegin();
// 如果当前高度集合heights中的最大高度不同于上一个高度,说明这是一个转折点
if (last[1] != maxHeight) {
// 更新 last,并加入结果集
last[0] = p.first;
last[1] = maxHeight;
res.push_back(last);
}
}
return res;
}
};