传感器数据滤波算法

嵌入式应用中,系统获取的传感器数据通常不能够直接供应用使用(存在噪声干扰:低频噪声或高频噪声),一般通过一种或者多种滤波算法结合,对原始数据进行滤波处理,在保证滤波后数据实时性要求的前提下(过度的数据滤波可能会影响系统的实时响应),获取相对稳定无噪声的数据用于实际的应用系统。

滤除噪声数据,最常见的方法是使用平均滤波:多次数据相加求和。但不同的滤波算法有着不同的特性,适用于不同的应用场景,根据应用特性,需要选择合适的滤波算法及其组合方式。

1、限幅滤波

限幅滤波算法,通常用于滤除原始数据中的异常数据,或系统认为的异常数据。限幅滤波算法,最直接的效果是减小滤波后输出数据的最大差值。代码实现如下:

int32_t FiflerLimiting(int32_t x, uint32_t liming)
{
	if (x > 0)
	{
		if (x > liming)
		{
			return liming;
		}	
	}
	else
	{
		if (x < -liming)
		{
			return -liming;
		}
	}
	return x;
}

2、平均滤波

平均滤波,取一定数量的原始数据,进行累加后取平均,从而获取较稳定的输出数据,主要滤除原始数据中的高频噪声。代码实现如下:

int32_t FilterAverage(const int32_t *x, int32_t n)
{
    int32_t i, sum = 0;
    
    for (i = 0; i < n; i++)
    {
        sum += *x++;
    }
    
    return (int32_t)((float)sum / n + 0.5);
}

3、中值滤波

中值滤波,在一组数据中(通常长度为奇数),挑出中间值作为滤波后数据输出。与限幅滤波相似,中值滤波可以减小滤波后输出数据的最大差值。与限幅滤波不同的是:限幅滤波只能使用设定的绝对值减小输出值最大偏差,而中值滤波是根据原始数据的变换,动态的滤除输出数据的最大偏差。

int32_t FilterMedian(const int32_t *x, int32_t n)
{
    int32_t count, i, j;
	uint32_t flag = 0;
	int32_t result = 0;

	for (count = 0; count < (n / 2 + 1); count++)
	{
		for (i = 0; i < n; i++)
		{
			if ((flag & (0x1 << i)) != 0)
			{
				continue;
			}

			for (j = 0; j < n; j++)
			{
				if ((flag & (0x1 << j)) != 0)
				{
					continue;
				}

				if (x[i] > x[j])
				{
					break;
				}
			}

			if (j == n)
			{
				flag |= 0x1 << i;
				result = x[i];
				break;
			}
		}
	}
	return result;
}

注:该函数希望不对输入数据的顺序及参数做任何调整,因此使用查找最小值的方法,依次查到最小值直到查找到中间值。

*滑动滤波

对于平均滤波和中值滤波,需要选取一组数据进行处理后输出一个有效数据,对应用系统来说,获取一个有效数据的时间讲大大加长。而滑动滤波,将连续的原始数据存放在队列,新增数据从队列尾加入,旧数据从队列尾移除,从而实现每一个原始数据,都可以滤波处理获取一个有效数据。滑动方式的平均滤波和中值滤波,又称滑动平均滤波和滑动中值滤波。
滑动滤波算法实现时,可以使用环形数据直接覆盖旧数据的形式实现,不需要移动数据。

#define LENGTH

uint8_t buffer;
uint32_t index = 0;

void NewData(uint8_t data)
{
	buffer[index++] = data;
	index %= LENGTH;
}

4、IIR滤波

IIR滤波的理论原理就不展开了,IIR滤波主要滤掉原始数据中的毛刺噪声数据。需要注意的是,IIR滤波的输出参考了上次滤波数据,因此IIR的滤波阶数越高,滤掉毛刺噪声的能力越强,但对应的数据实时性会变差。代码实现如下:

int32_t FilterIIR(int32_t x, int32_t oldy, int32_t k)
{
    int32_t result;
    
    result = (float)(x + (k - 1) * oldy) / k + 0.5;
    
    return result;
}

5、抖动滤波

在原始数据处于微小抖动了,为了实现滤波数据跟随,同时又不受微小抖动而波动,通常会实现抖动滤波。抖动滤波简单的说,就是当前依次原始数据,与上次滤波后的数据的差值,超过某一限定,才调整滤波输出数据,从而滤波原始数据中存在的微小抖动信号。
抖动滤波一般放在其他滤波方法之后使用,进一步稳定滤波后的数据。代码实现如下:

int32_t FilterJitter(int32_t x, int32_t oldy, int32_t threshold)
{
    int32_t result;
    
    result = x - oldy;
    if (result >= threshold)
    {
        return x - threshold;
    }
    else if (result <= -threshold)
    {
        return x + threshold;
    }
    
    return oldy;
}
### 力传感器滤波算法实现 对于力传感器而言,为了提高信号质量和准确性,通常采用多种滤波技术。这些技术能够有效减少外界干扰以及测量过程中的随机误差。 #### 1. IIR无限脉冲响应滤波器 IIR滤波主要用于去除原始数据里的尖峰噪声。此方法通过参考前一次的滤波结果来进行当前样本点的平滑处理。随着滤波阶数增加,虽然去噪能力增强,但是也会导致延迟加大,影响实时性能[^4]。 ```c++ int32_t FilterIIR(int32_t x, int32_t oldy, int32_t k) { int32_t result; result = (float)(x + (k - 1) * oldy) / k + 0.5; return result; } ``` #### 2. 卡尔曼滤波 作为一种高效的动态系统状态估计工具,卡尔曼滤波适用于线性和非线性的场景,在力传感领域同样表现出色。其核心在于结合先验知识与观测信息来更新对象的状态预测,并且具备良好的鲁棒性和适应性特点[^2]。 ```cpp // 假设已经定义好了KalmanFilter类及其成员函数predict()和update() void applyKalmanFilter(float measurement){ kalman.predict(); kalman.update(measurement); } ``` #### 3. 平均值滤波 简单易行的方式之一就是取连续几个读数的平均作为最终输出值。这种方法能较好地抑制高频波动成分,但对于低频变化不够敏感[^3]。 ```c++ #define FILTER_LENGTH 8 uint8_t index = 0; float sum = 0; for(uint8_t i=0;i<FILTER_LENGTH;i++){ sum += readings[i]; } averageValue = sum/FILTER_LENGTH; readings[index++] = newValue; if(index >= FILTER_LENGTH)index = 0; sum -= readings[index]; ``` #### 4. 中位数滤波 当面对含有大量异常点的数据集时,中位数法则显得尤为有用。它选取一组有序排列后的中间位置数值代表整体水平,从而达到排除极端情况的目的。 ```c++ #include <algorithm> using namespace std; sort(readings.begin(), readings.end()); medianValue = readings[FILTER_LENGTH/2]; ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Loong7066

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值