96、简化循环不变式生成:分裂谓词与随机动态系统监控

简化循环不变式生成:分裂谓词与随机动态系统监控

在软件开发和系统验证领域,循环不变式的生成以及系统运行时的监控是至关重要的环节。循环不变式有助于验证程序的正确性,而系统监控则能在运行时确保系统的行为符合预期。本文将介绍一种利用分裂谓词简化循环不变式生成的技术,以及随机动态系统的可监控性相关研究。

分裂谓词简化循环不变式生成

在使用Interproc工具进行基准测试时,原始基准代码使用了其输入语言中不包含的特性,因此需要手动修改这些基准代码。计算阶段分裂谓词所花费的时间可以忽略不计,算法在任何基准测试上的耗时都不超过90毫秒。

通过对表1中结果的分析,可以发现该技术显著提高了Interproc和InvGen生成的不变式的质量,并使它们能够验证之前无法验证的断言。具体结果如下表所示:
| 基准测试 | Interproc不变式改进情况 | InvGen不变式改进情况 | Interproc断言验证情况 | InvGen断言验证情况 |
| — | — | — | — | — |
| 前9个程序(双线上方) | 8个改进,1个不可比(mergesort) | 8个加强,1个等价 | 6个原程序至少一个断言无法验证,分裂后可验证所有 | 4个原程序无法验证,转换后可验证所有 |
| svd1, heapsort1, spam1 | 分裂后可验证,之前无法验证 | - | - | - |
| mergesort1 | 分裂后有新事实,但断言仍无法验证,弱断言时可利用新事实 | - | - | - |

此外,还有一些基准测试中,工具在分裂前后都能证明断言,但分裂后产生了更强的不变式。为了证明这种额外的精度是有用的,创建了s

内容概要:本文介绍了基于Python实现的SSA-GRU(麻雀搜索算法优化门控循环单元)时间序列预测项目。项目旨在通过结合SSA的全局搜索能力和GRU的时序信息处理能力,提升时间序列预测的精度和效率。文中详细描述了项目的背景、目标、挑战及解决方案,涵盖了从数据预处理到模型训练、优化及评估的全流程。SSA用于优化GRU的超参数,如隐藏层单元数、学习率等,以解决传统方法难以捕捉复杂非线性关系的问题。项目还提供了具体的代码示例,包括GRU模型的定义、训练和验证过程,以及SSA的种群初始化、迭代更新策略和适应度评估函数。; 适合人群:具备一定编程基础,特别是对时间序列预测和深度学习有一定了解的研究人员和技术开发者。; 使用场景及目标:①提高时间序列预测的精度和效率,适用于金融市场分析、气象预报、工业设备故障诊断等领域;②解决传统方法难以捕捉复杂非线性关系的问题;③通过自动化参数优化,减少人工干预,提升模型开发效率;④增强模型在不同数据集和未知环境中的泛化能力。; 阅读建议:由于项目涉及深度学习和智能优化算法的结合,建议读者在阅读过程中结合代码示例进行实践,理解SSA和GRU的工作原理及其在时间序列预测中的具体应用。同时,关注数据预处理、模型训练和优化的每个步骤,以确保对整个流程有全面的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值