13、微控制器优化 C++ 编程指南

微控制器优化 C++ 编程指南

1. 微控制器选择

在进行微控制器编程时,微控制器的资源是否满足应用需求至关重要。如果微控制器缺乏足够的资源,CPU 可能会过载,导致系统不可靠甚至失败。在这种情况下,可能需要一个更大的 32 位 CPU。为了保证应用的效率,选择具有合适性能和尺寸的微控制器是个不错的主意。

可以使用一段可移植的、计算密集型的微控制器 C++ 代码(如 CRC32 算法)作为基准测试的一部分,为选择合适的微控制器提供可靠的数据。

2. 了解算法复杂度

在计算机科学中,算法复杂度的极限行为可以通过算法输入大小中的项数 N 来表征。通常使用大 O 符号来表示算法复杂度,它是 N 的幂。以下是一些常见算法复杂度的示例:
| 算法类型 | 复杂度 | 示例 |
| ---- | ---- | ---- |
| 线性复杂度 | O(N) | 计数循环、简单加法校验和(如 CRC)、数字滤波器 |
| 二次复杂度 | O(N²) | 传统的小学乘法(a × b,a 和 b 都有 N 个组成部分) |

随着 N 的增加,算法的运行时间可能会迅速增长甚至变得无界。在这种情况下,为大 N 找到更好的算法通常是有意义的。例如,在有序点集中进行插值可以使用线性搜索或二分搜索:
- 线性搜索的复杂度为 O(N),因为它会遍历点直到找到插值对。
- 二分搜索使用区间二分法,复杂度为 O(log₂N)。当 N 为 128 时,线性搜索的最大复杂度约为 128,而二分搜索的复杂度约为 7。STL 中的许多搜索和排序算法都使用二分搜索,因此受益于对数复杂度的效率。

乘法速度通

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值