20年实战,我只用这一张「用数据说话」框架图

一个常见的认知误区是,认为数据从业者理应最擅长‘用数据说话’。但现实往往恰恰相反,这项技能在业务人员身上体现得更为娴熟。

其根源在于,业务人员始终面临着业绩成果的压力,数据是他们证明价值、争取支持的直接武器。这种能力是在实战中被反复锤炼后,内化于心的一种本能。

而我们数据从业者,更多时候扮演的是支撑性角色。我们的价值体现在数据的准确性与可用性上,而非利用数据去主张观点或推动决策。这造成了一种能力上的“功能性分离”

幸运的是,‘用数据说话’是一项通过主动刻意练习可以习得的技能。下面这张图,是我最近思考总结的关于如何掌握这种能力的系统性框架。

一、构建说服力的四大支柱

真正有说服力的数据沟通,并非天赋,而是建立在四个可以刻意练习的支柱之上。

支柱一:量化思维

这是一种思维习惯。面对任何业务问题,你都要先思考如何量化它。

比如,“提升数据质量”是一个模糊的目标。你应该把它分解。

当前核心供应商主数据的准确性是80%。 通过数据血缘分析,发现60%的错误源于采购部门手动录入时的不规范操作。 如果不治理,每年将因此产生约100万元的超付、错付款项。 我们投入20万,用三个月建立供应商准入标准和自动校验规则,能将准确率提升到98%,预计每年能挽回80万元的损失。

这就是将一个技术问题,转化成了一个清晰的商业提案。

支柱二:逻辑论证

逻辑是你的骨架。它让你的数据井井有条。最实用的逻辑就是金字塔原理。

比如,你要申请预算,建立一个统一的数据质量管理平台。

不要从什么是数据质量讲起。

直接亮出你的核心论点。

“我建议公司投资100万元,构建统一数据质量平台。它将实现三个核心价值:降低运营风险,提升决策效率,并节省IT成本。” 你后面的每一页内容,都必须是为这三个核心价值提供证据。

支柱三:有效的分析方法

这是你的工具箱,是从数据中挖掘黄金的利器。

归纳法。你盘点了公司三个主要业务部门的数据资产,都发现“数据安全分类不清”和“敏感数据未加密”的问题。你就可以归纳出,整个集团层面缺乏一个系统性的数据治理权责框架。

演绎法。公司的数据安全政策是“所有客户个人信息必须脱敏存储”。新上线的CRM系统中,“客户联系电话”属于客户个人信息。因此,你必须立即对这个字段进行脱敏处理。这是一个无可辩驳的结论。

统计分析。通过对数据问题处理工单进行回归分析,你发现“跨部门协调”是影响处理效率最核心的变量。这个结论,比你凭感觉抱怨“他们不配合”要有力一百倍。

仿真。在推出新的数据权限申请流程前,你可以通过仿真,模拟新流程对数据分析师获取数据时长的影响。这样你就能提前知道,新流程是会提升效率,还是会激怒所有人。

大数据分析。通过分析海量的数据库操作日志,你发现某个账号总是在凌晨三点,访问不相关的业务数据。这可能就是一个内部的数据安全隐患。

权威与文献。在规划公司的数据治理架构时,直接引用DAMA DMBOK的理论框架。这比你自己画一个组织图,要权威得多,也更容易获得认可。

支柱四:清晰的数据叙事

好的分析结果,需要好的呈现方式。

可视化。不要用表格展示各分公司的数据质量问题数量。用一张地图。用颜色深浅来标记问题严重程度。管理层一眼就能看出,哪个区域是重灾区。

叙事化。要说明数据血缘的重要性。你可以讲一个故事。一个错误的源头数据,是如何像病毒一样,污染了下游的十几个系统,最终导致了一次严重的生产事故。故事比技术术语更有感染力。

结论化。你的每一张图表,都必须有一个一句话的结论。例如,在一张复杂的数据架构图下面,直接写上:“结论:三大核心系统间存在47个重复的数据接口,每年造成约80万的额外维护成本。”这句话,才是这张图的意义。

二、批判性思维

如果说四大支柱是发动机,那么批判性思维就是那个永远保持清醒的驾驶员。

来看数据资产目录项目的“成功”与“真相”。

一个数据治理团队成功上线了数据资产目录平台。他们向管理层汇报,平台月活跃用户达到500,编目入库的数据表达到了3万张,完全符合项目KPI。 这是一个典型的,只看表面数据的汇报。 但一个具备批判性思维的驾驶员会立刻开始追问。

他会审视思维。我们的目标是“让大家用起来”,还是“让大家用起来解决问题”?我们定义的KPI,衡量的是无意义的“行为”,还是有价值的“结果”?

他会审视分析。这500个月活用户的构成是怎样的?是少数几个人每天登录刷出来的数字,还是广大分析师都在用?他们是上来浏览一下就走,还是真正找到了需要的数据?后台搜索日志显示,大家最想找的是什么?搜索结果的“零返回率”是多少?

他会审视逻辑。编目了3万张表,就等于提升了数据分析师的效率吗?这两者之间有必然的因果联系吗?有没有可能,大家只是因为被强制要求才上来“打卡”,而真正需要的数据,因为缺乏业务元数据和质量标签,依然找不到,也看不懂?

经过这一系列批判性的追问,团队才发现。虽然MAU达标,但超过80%的用户停留时长不足1分钟。高频搜索词的“零返回率”高达60%。所谓的“成功”只是虚假繁荣。项目并未真正解决核心痛点。

批判性思维,就是刺破这种虚假繁荣,抵达问题本质的唯一途径。

三、实战演练

现在,我们来看一个完整的案例。

你是一家制造集团的数据治理负责人。你的目标是说服管理层,投资一个供应商主数据治理项目。

你走进会议室,打开PPT。

第一页,结论先行。

“我建议启动供应商主数据治理项目,预算200万。这个项目将在18个月内,通过规范化管理全集团的供应商数据,为公司实现三大核心价值。第一,每年直接节省采购成本约400万元。第二,将供应商准入审核周期,从20天缩短至5天。第三,显著降低我们的供应链合规风险。”

接下来,你为每个论点提供论据。

论据一:节省采购成本。

你展示了一张图表(可视化)。“我们通过大数据分析,对过去三年的采购订单进行了关联挖掘。发现因为供应商信息不统一,同一物料,我们向其实为同一家供应商的不同分公司,支付了不同的价格。价差最高达15%。仅此一项,我们每年多付了约260万元。”

“我们还运用归纳法,分析了财务部门过去一年的支付记录。发现因为供应商银行账户信息错误,导致的支付失败和重新处理,每年的人工成本和财务费用,合计约140万元。两者相加,就是400万。”

论据二:提升效率。

你讲述了一个故事(叙事化)。“一个新的供应商,从接触到最终可以下单,平均需要20天。我们追踪了这个过程。发现其中有12天,都浪费在法务、财务、采购等多个部门之间,反复核对和传递供应商的资质文件上。因为我们的数据是割裂的。主数据项目将建立一个统一的供应商信息入口和审批流,将审核周期压缩到5天以内。”

论据三:降低合规风险。

这里你使用了演绎法权威与文献。“去年的审计报告(权威与文献),明确指出了一个风险项。它要求我们必须提供供应商完整的审计证据链,但我们分散的数据现状,导致我们无法满足这个硬性要求。这个推论(演绎法)很直接:我们面临一个必须关闭的合规缺口。主数据系统将自动形成这条证据链,彻底解决这个风险。”

在你汇报的过程中,你已经预判了可能会被挑战的问题(批判性思维)。

例如,当CEO问到项目对业务部门的影响时,你回答:“我们知道这会改变采购部门的工作习惯。因此,我们已经和采购部一起,通过仿真,设计了新的录入界面,确保操作时间不会增加。我们追求的是,让正确的事情,变得更容易。”

这是一场有说服力的汇报。因为你没有谈论技术,你在谈论生意。你说的每一个字,都建立在坚实的数据和严谨的逻辑之上。

这就是用数据说话的力量。它不是一种天赋,它是一套可以学习和掌握的系统。掌握它,你就能将你的专业价值,清晰地传递给每一个决策者。

希望于你有所启示!

图片

图片

公众号推送规则变了,如果您想及时收到推送,麻烦右下角点个在看或者把本号置顶

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

傅一平

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值