【机器学习】贝叶斯公式: P(B|A)=P(B)P(A|B)/P(A)

本文介绍了贝叶斯公式在病人分类、账号分类和性别分类中的应用。通过朴素贝叶斯分类器,利用统计资料计算不同类别下特征的概率,以确定新实例的类别。例如,通过计算打喷嚏建筑工人患感冒的概率,判断其可能的疾病。文章还讨论了处理连续变量的方法,如将连续值转换为离散区间或假设变量服从正态分布。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

贝叶斯公式: P(B|A)=P(B)P(A|B)/P(A)

P(AB):AB同时发生的概率
P(A|B): 在B发生的条件下,A发生的概率

一、病人分类的例子

让我从一个例子开始讲起,你会看到贝叶斯分类器很好懂,一点都不难。
某个医院早上收了六个门诊病人,如下表。

症状  		职业  		 疾病

打喷嚏      护士        感冒 
打喷嚏      农夫       过敏 
头痛       建筑工人     脑震荡 
头痛       建筑工人     感冒 
打喷嚏      教师       感冒 
头痛        教师         脑震荡

现在又来了第七个病人,是一个打喷嚏的建筑工人。请问他患上感冒的概率有多大?
根据贝叶斯定理:

P(A|B) = P(B|A) P(A) 
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值