平稳时间序列分析
一个序列经过预处理被识别为平稳非白噪声序列,就说明该序列是一个蕴含着相关信息的平稳序列。在统计上,我们通常是建立一个线性模型来拟合该序列的发展,借此提取该序列中的有用信息。ARMA(auto regression moving average)模型是目前最常采用的平稳序列拟合模型。
1.方法性工具
1.1 差分运算
一阶差分:
∇xt=xt−xt−1∇xt=xt−xt−1
二阶差分:
∇2xt=∇xt−∇xt−1∇2xt=∇xt−∇xt−1
p阶差分:
∇pxt=∇p−1xt−∇p−1xt−1∇pxt=∇p−1xt−∇p−1xt−1
k步差分:
∇k=xt−xx−k∇k=xt−xx−k
1.2 延迟算子
延迟算子类似于一个时间指针,当前序列值乘以一个延迟算子,就相当于把当前序列值的时间向过去拨了一个时刻。记B为延迟算子,有:
xt−1=Bx1xt−1=Bx1
xt−2=B2x1xt−2=B2x1
......
xt−p=Bpx1xt−p=Bpx1
延迟算子有如下性质:
1. b0=1b0=1
2.若c为任意常数,有 B(c⋅xt)=c⋅B(xt)=c⋅xt−1B(c⋅xt)=c⋅B(xt)=c⋅xt−1
3.对任意两个序列 xt,ytxt,yt ,有 B(xt±yt)=xt−1±yt−1B(xt±yt)=xt−1±yt−1
4.