王燕《应用时间序列分析》学习笔记2

本文是关于王燕《应用时间序列分析》的学习笔记,主要探讨了平稳时间序列的重要性及其预处理方法,包括一阶差分和线性差分方程。重点讲解了ARMA模型,包括AR(p)模型和MA(q)模型的结构和统计性质,旨在通过模型拟合提取序列中的有用信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

平稳时间序列分析
一个序列经过预处理被识别为平稳非白噪声序列,就说明该序列是一个蕴含着相关信息的平稳序列。在统计上,我们通常是建立一个线性模型来拟合该序列的发展,借此提取该序列中的有用信息。ARMA(auto regression moving average)模型是目前最常采用的平稳序列拟合模型。

1.方法性工具
1.1 差分运算
一阶差分:

xt=xtxt1∇xt=xt−xt−1

二阶差分:
2xt=xtxt1∇2xt=∇xt−∇xt−1

p阶差分:
pxt=p1xtp1xt1∇pxt=∇p−1xt−∇p−1xt−1

k步差分:
k=xtxxk∇k=xt−xx−k

1.2 延迟算子
延迟算子类似于一个时间指针,当前序列值乘以一个延迟算子,就相当于把当前序列值的时间向过去拨了一个时刻。记B为延迟算子,有:
xt1=Bx1xt−1=Bx1
xt2=B2x1xt−2=B2x1
......
xtp=Bpx1xt−p=Bpx1

延迟算子有如下性质:
1. b0=1b0=1
2.若c为任意常数,有 B(cxt)=cB(xt)=cxt1B(c⋅xt)=c⋅B(xt)=c⋅xt−1
3.对任意两个序列 xt,ytxt,yt ,有 B(xt±yt)=xt1±yt1B(xt±yt)=xt−1±yt−1
4.
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值