提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
文章目录
前言
OpenCV(Open Source Computer Vision Library)是一款开源的计算机视觉和机器学习软件库。它提供了一套全面的工具,用于图像和视频处理、计算机视觉以及机器学习。
图像处理: OpenCV提供了广泛的图像处理功能,涵盖了从基本操作到高级计算机视觉和图像处理任务的广泛范围,包括调整大小、裁剪、旋转、阈值处理、滤波和形态学操作等。这些操作对于操作和增强图像至关重要。
以下是一些常见的图像基本操作函数:
cv::resize
cv::resize函数用于改变图像的尺寸。它的基本语法如下:
cv::resize(src, dst, cv::Size(width, height), interpolation);
其中:
src 是输入图像。
dst 是输出图像。
cv::Size(width, height) 指定目标图像的宽度和高度。
interpolation 是插值方法,例如 cv::INTER_LINEAR(双线性插值)等。
案例
#include <opencv2/opencv.hpp>
int main() {
// 读取图像
cv::Mat inputImage = cv::imread("input_image.jpg");
if (inputImage.empty()) {
std::cerr << "Error: Unable to load the input image." << std::endl;
return -1;
}
// 调整图像大小
cv::Mat resizedImage;
cv::resize(inputImage, resizedImage, cv::Size(640, 480), cv::INTER_LINEAR);
// 保存调整大小后的图像
cv::imwrite("resized_image.jpg", resizedImage);
return 0;
}
cv::cvtColor
cv::cvtColor函数用于在不同的颜色空间之间进行转换。它的基本语法如下:
cv::cvtColor(src, dst, conversionCode);
其中:
src 是输入图像。
dst 是输出图像。
conversionCode 是颜色空间转换的代码,例如 cv::COLOR_BGR2GRAY(BGR到灰度)。
案例
#include <opencv2/opencv.hpp>
int main() {
// 读取彩色图像
cv::Mat colorIma