基于自注意力机制的无边界应用动作识别方法

摘 要 近年来,工业互联网获得了飞速的发展.但是和传统互联网一样,工业互联网也面临着大量的网络攻击威胁和敏感信息泄露风险.而流量识别技术,特别是细粒度的应用动作识别技术,可以辅助网络管理者对异常行为进行检测和及早发现隐私泄露风险,保障工业互联网的安全.然而,现有动作识别技术依赖对流量数据中动作边界的预先分割,无法识别无边界的动作,难以应用于实际场景.为解决这一问题,提出一种无边界动作识别算法:首先构建基于自注意力机制的包级识别模型,对数据包进行动作分类;然后提出动作聚合算法,从数据包的分类结果中聚合出动作序列;最后,建立2种新指标来衡量识别结果的好坏.为验证算法的可行性,以微信为实例进行实验,结果表明该模型能够取得最高超过90%的序列识别精度.这一研究成果将有望极大推动应用动作识别技术的实用化.

关键词 工业互联网;流量分类;动作识别;深度学习;自注意力

工业互联网是近年来工业制造与互联网、大数据、云计算、人工智能等技术不断发展并走向深度融合的产物,是工业生产的重要发展趋势.我国于2013年提出“中国制造2025”战略,全面推动工业制造走向数字化、智能化[1].然而,工业互联网同时也是网络攻击的重要目标,面临着众多的安全威胁.《工业互联网平台安全白皮书(2020)》指出[2],我国许多工业互联网平台遭受网络攻击多达平均每日90次,而用户的安全意识却普遍淡薄.

工业互联网安全威胁主要分布在工业数据、工业应用层、工业云平台服务层、工业云基础设施层、边缘计算层等5个层次.其中,工业数据层、应用层和云平台服务层面临的网络攻击威胁和敏感数据泄露风险,在传统互联网中也存在.过去几十年的研究中,研究者们经常使用流量识别技术辅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

罗思付之技术屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值