【摘 要】围长较大的短码长准循环(QC)低密度奇偶校验(LDPC)码的显式构造对于QC-LDPC短码的理论研究与工程应用具有重要意义。首先提出一种基于成对策略的贪婪搜索算法,并根据此算法在列重J为4时的经验结果,归纳总结出一种具有双序列反序特征的指数矩阵。随后证明了该指数矩阵对于任意行重L均对应于围长为8的QC-LDPC码。与现有的典型显式构造方法即最大公约数(GCD)方法相比,新QC-LDPC码提供的码长显著降低。最后,将指数矩阵的拆分拼接和掩膜处理技巧与新QC-LDPC码结合起来,设计出了译码性能在高信噪比区超过5G NR LDPC码的合成码。
【关键词】低密度奇偶校验码;准循环;环路;反序;5G NR
0 引言
低密度奇偶校验(LDPC, Low-Density Parity-Check)码[1]是一类前向纠错(FEC, Forward Error Correction)码。作为一种特殊的LDPC码,准循环(QC, Quasi-Cyclic)LDPC码不仅可以具有优异的译码性能,而且因为具有高度结构化的生成矩阵和校验矩阵,因此大大降低了编码和译码的硬件实现复杂度。QC-LDPC码不仅已被5G NR标准所采用[2-4],而且根据近期若干综述性文献的观点,也是6G标准中信道编码的主流备选方案。具体来说,在超低时延和超高可靠性的驱动下,6G通信系统对短码长的QC-LDPC码具有很强的应用需求。由于给定列重下短环路的存在会降低QC-LDPC码的最小距离下界,因此通常认为短环会对译码性能产生消极影响[5-6]。根据是否使用计算机搜索,以消除短环路为中心的QC-LDPC短码