探索人工神经网络的应用与发展
1. 引言
人工神经网络(Artificial Neural Networks, ANNs)是一种模拟生物神经系统的信息处理结构。它们由大量高度互联的处理元素(神经元)组成,每个神经元是一个简单的处理器,具有有限的计算能力,通常受限于组合输入信号的规则(使用激活函数)以计算输出。ANNs的能力在于它们可以通过大量实例(大量案例)进行学习,而无需事先固定了解过程参数之间的关系。近年来,随着ANNs的迅速发展,它们已经在多个科学领域得到了广泛应用,包括工程学、计算机科学、数学、人工智能、生物学、环境科学、运筹学和神经科学等。
2. 人工神经网络的基本原理
2.1 神经元的工作机制
神经元是ANNs的基本构建单元。每个神经元接收来自其他神经元的输入信号,通过激活函数进行处理,并将结果传递给其他神经元。以下是神经元工作的基本步骤:
- 接收输入信号 :神经元接收来自其他神经元的输入信号。
- 加权求和 :每个输入信号乘以其对应的权重,然后将所有加权后的输入信号求和。
- 激活函数 :将加权求和的结果输入到激活函数中,产生输出信号。
- 传递输出信号 :将激活函数的输出信号传递给其他神经元或作为最终输出。
2.2 激活函数的作用
激活函数是神经元中不可或缺的一部分,它决定了神经元的输出是否会被激活。常用的激活函数包括: